This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087400 #15 Jul 05 2024 08:13:12 %S A087400 13,163,2803,3565153,210344143,86915972211813115391953, %T A087400 4419764102942908730796303703,114681479899746991802547357477494803 %N A087400 Primes p such that p+2 is a piptorial number. Also numbers such that A080696(n)- 2 is prime. %C A087400 Piptorial numbers are the partial products of prime-indexed primes. %C A087400 Sum of reciprocals = 0.08341509210884323904648676616... %C A087400 a(9) = A080696(1111) - 2 = 1.0954...*10^4885. - _Amiram Eldar_, Jul 05 2024 %e A087400 (Product of first four pips) - 2 = 3*5*11*17 - 2 = 2805 - 2 = 2803, which is prime, so 2803 is in the sequence. %t A087400 seq[kmax_] := Module[{r = 1, p = 1, s = {}}, Do[p = NextPrime[p]; r *= Prime[p]; If[PrimeQ[r - 2], AppendTo[s, r - 2]], {k, 1, kmax}]; s]; seq[20] (* _Amiram Eldar_, Jul 05 2024 *) %o A087400 (PARI) piptorial(n) = { s=0; p=1; for(x=1,n, p=p*prime(prime(x)); if(isprime(p-2),print1(p-2","); s+=1.0/(p-2)) ); print(); print(s) } %Y A087400 Cf. A080696, A090886. %K A087400 nonn %O A087400 1,1 %A A087400 _Cino Hilliard_, Oct 21 2003