This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087401 #17 Jul 10 2020 14:08:38 %S A087401 0,0,0,0,1,1,0,2,3,3,0,3,5,6,6,0,4,7,9,10,10,0,5,9,12,14,15,15,0,6,11, %T A087401 15,18,20,21,21,0,7,13,18,22,25,27,28,28,0,8,15,21,26,30,33,35,36,36, %U A087401 0,9,17,24,30,35,39,42,44,45,45,0,10,19,27,34,40,45,49,52,54,55,55,0,11 %N A087401 Triangle of n*r-binomial(r+1,2). %C A087401 There is a curious connection with the character tables of cyclic groups of prime power order. Let G be a cyclic group of order p^n where p is prime and n is nonnegative. Construct an (n+1)x(n+1) matrix A whose rows and columns are indexed by the set 0,1,...,n as follows. The ij entry is obtained by taking any element of order p^(n-j) in G and summing its character values over all characters of order p^i in the dual group of G. Remarkably, all coefficients of the characteristic polynomial of A are powers of p (with alternating signs) and these powers can be read off from the appropriate row of our triangle. For example if n=2 then the characteristic polynomial is X^3 - p^2*X^2 + p^3*X - p^3. %H A087401 Reinhard Zumkeller, <a href="/A087401/b087401.txt">Rows n = 0..120 of triangle, flattened</a> %F A087401 T(0,0)=0 and for n>0: T(n,k)=T(n-1,k)+k for k<n and T(n,n)=T(n,n-1). - _Reinhard Zumkeller_, Oct 03 2012 %e A087401 0 %e A087401 0 0 %e A087401 0 1 1 %e A087401 0 2 3 3 %e A087401 0 3 5 6 6 %e A087401 0 4 7 9 10 10 %e A087401 0 5 9 12 14 15 15 %e A087401 0 6 11 15 18 20 21 21 %e A087401 0 7 13 18 22 25 27 28 28 %e A087401 0 8 15 21 26 30 33 35 36 36 %e A087401 0 9 17 24 30 35 39 42 44 45 45 %p A087401 A087401 := proc(n,k) %p A087401 n*k-binomial(k+1,2) ; %p A087401 end proc: %p A087401 seq(seq( A087401(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Jan 21 2015 %t A087401 Table[n*r-Binomial[r+1,2],{n,0,20},{r,0,n}]//Flatten (* _Harvey P. Dale_, Jul 10 2020 *) %o A087401 (Haskell) %o A087401 a087401 n k = a087401_tabl !! n !! k %o A087401 a087401_row n = a087401_tabl !! n %o A087401 a087401_tabl = iterate f [0] where %o A087401 f row = row' ++ [last row'] where row' = zipWith (+) row [0..] %o A087401 -- _Reinhard Zumkeller_, Oct 03 2012 %Y A087401 Cf. A138666. %K A087401 easy,nonn,tabl %O A087401 0,8 %A A087401 _Paul Boddington_, Oct 21 2003