cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087436 Number of odd prime factors of n, counted with repetitions.

This page as a plain text file.
%I A087436 #45 May 16 2025 08:51:17
%S A087436 0,0,1,0,1,1,1,0,2,1,1,1,1,1,2,0,1,2,1,1,2,1,1,1,2,1,3,1,1,2,1,0,2,1,
%T A087436 2,2,1,1,2,1,1,2,1,1,3,1,1,1,2,2,2,1,1,3,2,1,2,1,1,2,1,1,3,0,2,2,1,1,
%U A087436 2,2,1,2,1,1,3,1,2,2,1,1,4,1,1,2,2,1,2,1,1,3,2,1,2,1,2,1,1,2,3,2,1,2
%N A087436 Number of odd prime factors of n, counted with repetitions.
%C A087436 Number of parts larger than 1 in the partition with Heinz number n. The Heinz number of an integer partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). Example: a(9) = 2 because the partition with Heinz number 9 (=3*3) is [2,2]. - _Emeric Deutsch_, Oct 02 2015
%C A087436 Totally additive because both A001222 and A007814 are. a(2) = 0, and a(p) = 1 for odd primes p, a(m*n) = a(m)+a(n) for m, n > 1. - _Antti Karttunen_, Jul 10 2020
%H A087436 Antti Karttunen, <a href="/A087436/b087436.txt">Table of n, a(n) for n = 1..65537</a> (first 1000 terms from G. C. Greubel)
%F A087436 a(n) = A001222(n) - A007814(n).
%F A087436 a(n) = A001222(A000265(n)). - _Antti Karttunen_, Jul 10 2020
%F A087436 Sum_{k=1..n} a(k) = n * (log(log(n)) + B_2 - 1) + O(n/log(n)), where B_2 = A083342. - _Amiram Eldar_, May 16 2025
%e A087436 a(9) = 2 because 9 = 3*3 has 2 odd prime factors. - _Emeric Deutsch_, Oct 02 2015
%p A087436 seq(bigomega(n) - padic[ordp](n, 2), n=1..102); # _Peter Luschny_, Dec 06 2017
%t A087436 Join[{0},Table[Length[Select[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]],OddQ]],{n,2,110}]] (* _Harvey P. Dale_, Feb 01 2013 *)
%o A087436 (PARI) a(n) = bigomega(n) - valuation(n, 2); \\ _Michel Marcus_, Sep 10 2019
%o A087436 (PARI) A087436(n) = (bigomega(n>>valuation(n,2))); \\ _Antti Karttunen_, Jul 10 2020
%Y A087436 Cf. A000244 (the first occurrence of each n, and also the positions of records).
%Y A087436 Cf. A000265, A001222, A005087, A007814, A083342, A215366, A336118, A336161.
%K A087436 nonn,easy
%O A087436 1,9
%A A087436 _Reinhard Zumkeller_, Sep 03 2003