cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087457 Number of odd length roads between any adjacent nodes in virtual optimal chordal ring of degree 3 (the length of chord < number of nodes/2).

This page as a plain text file.
%I A087457 #49 Nov 06 2023 11:04:50
%S A087457 1,5,31,213,1551,11723,90945,719253,5773279,46889355,384487665,
%T A087457 3177879675,26442188865,221278343445,1860908156031,15717475208853,
%U A087457 133256583398655,1133591857814363,9672323357640129,82752014457666363,709719620585186529,6100394753270329605
%N A087457 Number of odd length roads between any adjacent nodes in virtual optimal chordal ring of degree 3 (the length of chord < number of nodes/2).
%D A087457 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, see page number?
%H A087457 Seiichi Manyama, <a href="/A087457/b087457.txt">Table of n, a(n) for n = 1..1052</a> (terms 1..100 from T. D. Noe)
%F A087457 a(1) = 1; a(n) = 9*a(n-1) - 2*A086618(n), where A086618(n) = Sum_{k=0..n} Catalan(n)*binomial(n, k)^2, and Catalan(n) = (2*n)!/(n!*(n+1)!). - _Michael Somos_
%F A087457 a(n) = A002893(n)/3 = (1/3)*Sum_{k=0..n}binomial(n,k)^2*binomial(2k,k). - _Philippe Deléham_, Sep 14 2008
%F A087457 Recurrence: n^2*a(n) = (10*n^2-10*n+3)*a(n-1) - 9*(n-1)^2*a(n-2). - _Vaclav Kotesovec_, Oct 14 2012
%F A087457 a(n) ~ 3^(2*n+1/2)/(4*Pi*n). - _Vaclav Kotesovec_, Oct 14 2012
%F A087457 G.f.: (hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2)/(1-9*x)^(2/3)-1)/3.  - _Mark van Hoeij_, May 14 2013
%F A087457 G.f.: G(0)/(6*x*(1-9*x)^(2/3) ) -1/(3*x), where G(k)= 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 31 2013
%F A087457 a(n) = hypergeom([1/2, -n, -n], [1, 1], 4) / 3. - _Peter Luschny_, Nov 06 2023
%e A087457 a(1)=1; a(2)=9*a(1)-2*2=9-4=5; a(3)=9*5-2*7=31; a(4)=9*31-2*33=213; etc
%p A087457 a := 1; s := 0; for k from 1 to 10 do for i from 0 to k do ss := ((2*(i))!/((i)!*(i+1)!))*((k)!/((i)!*(k-i)!))^2; s := s+ss; od; a := (9*a-2*s); s := 0; od;
%p A087457 # Alternative:
%p A087457 a := n -> hypergeom([1/2, -n, -n], [1, 1], 4)/3;
%p A087457 seq(simplify(a(n)), n = 1..22);  # _Peter Luschny_, Nov 06 2023
%t A087457 Table[Sum[Binomial[n,k]^2*Binomial[2k,k],{k,0,n}]/3,{n,1,20}] (* _Vaclav Kotesovec_, Oct 14 2012 *)
%o A087457 (PARI) a(n) = sum(k=0, n, binomial(n,k)^2*binomial(2*k,k))/3; \\ _Michel Marcus_, May 10 2020
%Y A087457 Cf. A086617, A086618, A002893.
%K A087457 nonn
%O A087457 1,2
%A A087457 B. Dubalski (dubalski(AT)atr.bydgoszcz.pl), Oct 23 2003