A087463 Generalized multiplicative Jacobsthal sequence.
0, 1, 1, 0, 5, 11, 0, 43, 85, 0, 341, 683, 0, 2731, 5461, 0, 21845, 43691, 0, 174763, 349525, 0, 1398101, 2796203, 0, 11184811, 22369621, 0, 89478485, 178956971, 0, 715827883, 1431655765, 0, 5726623061, 11453246123, 0, 45812984491, 91625968981, 0
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,7,0,0,8).
Programs
-
PARI
concat(0, Vec(-x*(4*x^4-2*x^3+x+1)/((x+1)*(2*x-1)*(x^2-x+1)*(4*x^2+2*x+1)) + O(x^100))) \\ Colin Barker, Nov 02 2015
Formula
a(n) = Sum_{k=0..n} if (mod(n*k, 3)=1, 1, 0)*C(n, k).
a(n) = (2/9)*(1-cos(2*Pi*n/3))*(2^n-(-1)^n).
From Colin Barker, Nov 02 2015: (Start)
a(n) = 7*a(n-3)+8*a(n-6) for n>5.
G.f.: -x*(4*x^4-2*x^3+x+1) / ((x+1)*(2*x-1)*(x^2-x+1)*(4*x^2+2*x+1)).
(End)
Comments