cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087494 Decimal expansion of Khinchin mean K_{-4}.

This page as a plain text file.
%I A087494 #10 Feb 16 2025 08:32:51
%S A087494 1,2,3,6,9,6,1,8,0,9,4,2,3,7,3,0,0,5,2,6,2,6,2,2,7,2,4,4,4,5,3,4,2,2,
%T A087494 5,6,7,4,2,0,2,4,1,1,3,1,5,4,8,9,3,7,1,3,0,0,9,1,9,5,9,2,7,9,9,4,4,2,
%U A087494 6,5,9,0,4,9,4,8,9,1,0,6,5,5,0,7,7,0,4,2,7,0,8,9,2,3,6,4,1,2,8,0
%N A087494 Decimal expansion of Khinchin mean K_{-4}.
%C A087494 Khinchin's constant is K_0.
%H A087494 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KhinchinsConstant.html">Khinchin's Constant</a>
%e A087494 1.23696180...
%t A087494 m = 4; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 14 2013 *)
%Y A087494 Cf. A002210, A087491, A087492, A087493, A087494, A087495, A087496, A087497, A087498, A087499, A087500.
%K A087494 nonn,cons
%O A087494 1,2
%A A087494 _Eric W. Weisstein_, Sep 09 2003
%E A087494 More terms from _Jean-François Alcover_, Feb 14 2013