cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087497 Decimal expansion of Khinchin mean K_{-7}.

This page as a plain text file.
%I A087497 #10 Feb 16 2025 08:32:51
%S A087497 1,1,3,3,3,2,3,3,6,3,9,5,0,8,6,5,7,9,4,9,1,0,2,8,9,6,9,4,9,0,8,8,6,8,
%T A087497 3,6,3,5,9,9,0,9,8,2,8,2,4,1,1,7,9,7,7,5,2,5,9,6,1,3,0,8,1,7,9,4,4,2,
%U A087497 5,7,4,1,9,8,7,6,2,6,7,4,4,5,0,1,0,3,5,4,4,5,8,0,4,9,0,0,2,0,2,6
%N A087497 Decimal expansion of Khinchin mean K_{-7}.
%C A087497 Khinchin's constant is K_0.
%H A087497 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KhinchinsConstant.html">Khinchin's Constant</a>
%e A087497 1.13332336...
%t A087497 m = 7; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 14 2013 *)
%Y A087497 Cf. A002210, A087491, A087492, A087493, A087494, A087495, A087496, A087497, A087498, A087499, A087500.
%K A087497 nonn,cons
%O A087497 1,3
%A A087497 _Eric W. Weisstein_, Sep 09 2003
%E A087497 More terms from _Jean-François Alcover_, Feb 14 2013