This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087499 #10 Feb 16 2025 08:32:51 %S A087499 1,1,0,2,5,4,3,1,3,6,6,7,0,7,2,8,0,1,3,8,3,6,0,9,3,4,0,2,5,2,2,5,6,8, %T A087499 3,5,1,0,2,2,2,2,1,2,8,4,1,4,9,3,1,8,4,0,2,3,3,1,3,1,9,8,4,7,6,8,6,3, %U A087499 2,5,6,2,6,9,4,7,4,4,6,0,3,3,3,6,4,1,3,9,2,0,7,8,7,2,3,7,1,7,8,4 %N A087499 Decimal expansion of Khinchin mean K_{-9}. %C A087499 Khinchin's constant is K_0. %H A087499 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KhinchinsConstant.html">Khinchin's Constant</a> %e A087499 1.10254313... %t A087499 m = 9; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 14 2013 *) %Y A087499 Cf. A002210, A087491, A087492, A087493, A087494, A087495, A087496, A087497, A087498, A087499, A087500. %K A087499 nonn,cons %O A087499 1,4 %A A087499 _Eric W. Weisstein_, Sep 09 2003 %E A087499 More terms from _Jean-François Alcover_, Feb 14 2013