This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087527 #18 Sep 21 2024 12:23:28 %S A087527 23,23223323,32323223,2222323333,2223223333,2232223333,2232322333, %T A087527 2232332233,2323222333,2332322233,2333222323,2333223223,3223232323, %U A087527 3232222333,3232232233,3232233223,3232322323,3323232223,22222232333333,22222322333333,22222323233333 %N A087527 Primes consisting only of digits 2 and 3 occurring with equal frequency. %C A087527 There are 18 digit pairs which can produce such primes. (1,0),(1,3),(1,4),(1,6),(1,7),(1,9),(2,3),(2,9),(3,4),(3,5),(3,7),(3,8),(4,7),(4,9),(5,9),(6,7),(7,9),(8,9). %H A087527 Michael S. Branicky, <a href="/A087527/b087527.txt">Table of n, a(n) for n = 1..10000</a> %o A087527 (Python) %o A087527 from sympy import isprime %o A087527 from sympy.utilities.iterables import multiset_permutations %o A087527 def auptodigs(maxdigits): %o A087527 alst = [] %o A087527 for d in range(2, maxdigits + 1, 2): %o A087527 ms = "2"*(d//2) + "3"*(d//2 - 1) %o A087527 for p in multiset_permutations(ms, d-1): %o A087527 t = int("".join(p) + "3") %o A087527 if isprime(t): %o A087527 alst.append(t) %o A087527 return alst %o A087527 print(auptodigs(10)) # _Michael S. Branicky_, Jan 11 2022 %o A087527 (PARI) \\ Needs B() from A087510. %o A087527 concat(vector(6,k,B(k,2,3,isprime))) \\ _Andrew Howroyd_, Sep 21 2024 %Y A087527 Cf. A087510, A087511, A087515. %K A087527 base,nonn %O A087527 1,1 %A A087527 _Paul D. Hanna_ and _Amarnath Murthy_, Sep 12 2003 %E A087527 Offset changed to 1 and a(19) corrected by _Georg Fischer_, Jan 11 2022