A087644 Triangle T(n,k) (n >= 2, 1 <= k <= n) read by rows: (1/2) times number of linearly inducible orderings of n points in k-dimensional Euclidean space.
1, 1, 3, 1, 6, 12, 1, 10, 36, 60, 1, 15, 86, 240, 360, 1, 21, 176, 756, 1800, 2520, 1, 28, 323, 1988, 7092, 15120, 20160, 1, 36, 547, 4572, 22996, 71856, 141120, 181440, 1, 45, 871, 9495, 64144, 278820, 787824, 1451520, 1814400, 1, 55, 1321, 18205, 159094
Offset: 2
Links
- T. M. Cover, The number of linearly inducible orderings of points in d-space, SIAM J. Applied Math., 15 (1967), 434-439.
Crossrefs
Cf. A071223.
Programs
-
Maple
T:=proc(n,k) if k>=n then 0 elif k=1 and n>=2 then 1 elif n=2 and k>=1 then 1 elif k=n-1 then n!/2 else T(n-1,k)+(n-1)*T(n-1,k-1) fi end:seq(seq(T(n,k),k=1..n-1),n=2..12);
Extensions
More terms from Emeric Deutsch, May 24 2004
Comments