cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087654 Decimal expansion of D(1) where D(x) is the Dawson function.

This page as a plain text file.
%I A087654 #31 Feb 16 2025 08:32:51
%S A087654 5,3,8,0,7,9,5,0,6,9,1,2,7,6,8,4,1,9,1,3,6,3,8,7,4,2,0,4,0,7,5,5,6,7,
%T A087654 5,4,7,9,1,9,7,5,0,0,1,7,5,3,9,3,3,3,1,8,8,7,5,2,1,9,0,9,8,0,0,2,5,6,
%U A087654 6,5,0,3,3,3,0,5,2,7,1,0,6,2,9,7,2,6,0,8,6,1,5,0,2,7,4,3,0,8,0,9,3,8,8,9
%N A087654 Decimal expansion of D(1) where D(x) is the Dawson function.
%D A087654 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 42, page 407.
%H A087654 G. C. Greubel, <a href="/A087654/b087654.txt">Table of n, a(n) for n = 0..5000</a>
%H A087654 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DawsonsIntegral.html">Dawson's Integral</a>.
%F A087654 D(1) = (1/e)*Integral_{t=0..1} exp(t^2) dt.
%F A087654 Equals Integral_{x=0..oo} e^(-x^2) sin(2x) dx = 1F1(1;3/2;-1). - _R. J. Mathar_, Jul 10 2024
%F A087654 Equals A099288 * sqrt(Pi)/(2e) = A099288 *A019704 * A068985. - _R. J. Mathar_, Jul 10 2024
%e A087654 0.5380795069127684191363874204075567547919750017539...
%t A087654 RealDigits[ N[ Sqrt[Pi]*Erfi[1]/(2*E), 105]][[1]] (* _Jean-François Alcover_, Nov 08 2012 *)
%t A087654 RealDigits[DawsonF[1], 10, 120][[1]] (* _Amiram Eldar_, Jun 25 2023 *)
%o A087654 (PARI) intnum(t=0, 1, exp(t^2))/exp(1) \\ _Michel Marcus_, Feb 28 2023
%K A087654 cons,nonn
%O A087654 0,1
%A A087654 _Benoit Cloitre_, Sep 25 2003