This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087665 #17 Feb 18 2021 16:07:18 %S A087665 2,18,5,550935,3,3396542576998428,105 %N A087665 Consider recurrence b(0) = n/4, b(k) = b(k-1)*floor(b(k-1)); sequence gives first integer reached, or -1 if no integer is ever reached. %C A087665 It is conjectured that an integer is always reached if the initial value is >= 2. %C A087665 a(133) has 6227 digits. - _Michael S. Branicky_, Feb 18 2021 %H A087665 Michael S. Branicky, <a href="/A087665/b087665.txt">Table of n, a(n) for n = 8..132</a> %H A087665 J. C. Lagarias and N. J. A. Sloane, Approximate squaring (<a href="http://neilsloane.com/doc/apsq.pdf">pdf</a>, <a href="http://neilsloane.com/doc/apsq.ps">ps</a>), Experimental Math., 13 (2004), 113-128. %o A087665 (Python) %o A087665 from fractions import Fraction %o A087665 def a(n): %o A087665 b = Fraction(n, 4) %o A087665 while b.denominator != 1: b *= int(b) %o A087665 return b %o A087665 for n in range(8, 15): print(a(n)) # _Michael S. Branicky_, Feb 18 2021 %Y A087665 Cf. A087664 (steps to reach an integer), A087667, A087668. %K A087665 nonn %O A087665 8,1 %A A087665 _N. J. A. Sloane_, Sep 27 2003 %E A087665 The next term is too large to include.