A087675 Consider recurrence b(0) = (2n+1)/2, b(n) = b(0)*floor(b(n-1)); sequence gives first integer reached.
5, 35, 18, 814, 39, 390, 68, 72827, 105, 1449, 150, 31887, 203, 3596, 264, 27852510, 333, 7215, 410, 208464, 495, 12690, 588, 10561998, 689, 20405, 798, 744049, 915, 30744, 1040, 46620858503, 1173, 44091, 1314, 1950450, 1463, 60830, 1620, 121575329, 1785
Offset: 2
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
- J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
Crossrefs
Programs
-
Maple
f:= proc(n) local b0, b; b0:= (2*n+1)/2; b:= b0; do b:= b0*floor(b); if b::integer then return b fi od end proc: map(f, [$2..100]); # Robert Israel, Nov 25 2019
-
Mathematica
f[n_] := Module[{b0, b}, b0 = (2n+1)/2; b = b0; While[True, b = b0*Floor[b]; If[IntegerQ[b], Return[b]]]]; Table[f[n], {n, 2, 100}] (* Jean-François Alcover, Oct 23 2023, after Robert Israel *)
Formula
The even-indexed terms are given by A007742.
Extensions
Offset corrected by Robert Israel, Nov 25 2019