A087705 First integer > n reached under iteration of map x -> (5/3)*floor(x) when started at n, or -1 if no such integer is ever reached.
5, 5, 10, 35, 10, 30, 35, 15, 905, 30, 20, 35, 105, 25, 905, 210, 30, 85, 55, 35, 60, 105, 40, 2410, 905, 45, 210, 80, 50, 85, 405, 55, 155, 160, 60, 280, 105, 65, 110, 2410, 70, 905, 335, 75, 210, 130, 80, 135, 230, 85, 660, 405, 90, 1160, 155, 95, 160, 2085, 100
Offset: 2
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
- J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
Programs
-
Maple
f2 := proc(x,y) x*floor(y); end; r := 5/3; h := proc(x) local n,y; global r; y := f2(r,x); for n from 1 to 20 do if whattype(y) = 'integer' then RETURN([x,n,y]); else y := f2(r,y); fi; od: RETURN(['NULL','NULL','NULL']); end; [seq(h(n)[3],n=2..60)];
-
Python
from fractions import Fraction def A087705(n): x = Fraction(n,1) while x.denominator > 1 or x<=n: x = Fraction(5*x._floor_(),3) return int(x) # Chai Wah Wu, Sep 01 2023
Comments