cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A087704 Number of steps for iteration of map x -> (5/3)*floor(x) to reach an integer > n when started at n, or -1 if no such integer is ever reached.

Original entry on oeis.org

2, 1, 2, 4, 1, 3, 3, 1, 9, 2, 1, 2, 4, 1, 8, 5, 1, 3, 2, 1, 2, 3, 1, 9, 7, 1, 4, 2, 1, 2, 5, 1, 3, 3, 1, 4, 2, 1, 2, 8, 1, 6, 4, 1, 3, 2, 1, 2, 3, 1, 5, 4, 1, 6, 2, 1, 2, 7, 1, 3, 3, 1, 6, 2, 1, 2, 7, 1, 4, 5, 1, 3, 2, 1, 2, 3, 1, 4, 7, 1, 10, 2, 1, 2, 4, 1, 3, 3, 1, 5, 2, 1, 2, 4, 1, 8, 6, 1, 3
Offset: 2

Views

Author

N. J. A. Sloane, Sep 29 2003

Keywords

Comments

It is conjectured that an integer is always reached.

Crossrefs

Programs

  • Maple
    f2 := proc(x,y) x*floor(y); end; r := 5/3; h := proc(x) local n,y; global r; y := f2(r,x); for n from 1 to 20 do if whattype(y) = 'integer' then RETURN([x,n,y]); else y := f2(r,y); fi; od: RETURN(['NULL','NULL','NULL']); end; [seq(h(n)[2],n=2..60)];
  • Python
    from fractions import Fraction
    def A087704(n):
        x, c = Fraction(n,1), 0
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._floor_(),3)
            c += 1
        return c # Chai Wah Wu, Sep 01 2023

Formula

a(n) = a(n + m) if a(n) > 0 and m is a (positive or negative) multiple of 3^a(n). - Robert Israel, Sep 01 2023

A087705 First integer > n reached under iteration of map x -> (5/3)*floor(x) when started at n, or -1 if no such integer is ever reached.

Original entry on oeis.org

5, 5, 10, 35, 10, 30, 35, 15, 905, 30, 20, 35, 105, 25, 905, 210, 30, 85, 55, 35, 60, 105, 40, 2410, 905, 45, 210, 80, 50, 85, 405, 55, 155, 160, 60, 280, 105, 65, 110, 2410, 70, 905, 335, 75, 210, 130, 80, 135, 230, 85, 660, 405, 90, 1160, 155, 95, 160, 2085, 100
Offset: 2

Views

Author

N. J. A. Sloane, Sep 29 2003

Keywords

Comments

It is conjectured that an integer is always reached.

Crossrefs

Programs

  • Maple
    f2 := proc(x,y) x*floor(y); end; r := 5/3; h := proc(x) local n,y; global r; y := f2(r,x); for n from 1 to 20 do if whattype(y) = 'integer' then RETURN([x,n,y]); else y := f2(r,y); fi; od: RETURN(['NULL','NULL','NULL']); end; [seq(h(n)[3],n=2..60)];
  • Python
    from fractions import Fraction
    def A087705(n):
        x = Fraction(n,1)
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._floor_(),3)
        return int(x) # Chai Wah Wu, Sep 01 2023

A087707 Number of steps for iteration of map x -> (5/3)*ceiling(x) to reach an integer > n when started at n, or -1 if no such integer is ever reached.

Original entry on oeis.org

5, 4, 1, 3, 2, 1, 2, 3, 1, 10, 4, 1, 6, 2, 1, 2, 9, 1, 3, 3, 1, 5, 2, 1, 2, 5, 1, 4, 8, 1, 3, 2, 1, 2, 3, 1, 4, 12, 1, 5, 2, 1, 2, 4, 1, 3, 3, 1, 7, 2, 1, 2, 4, 1, 5, 6, 1, 3, 2, 1, 2, 3, 1, 11, 5, 1, 4, 2, 1, 2, 6, 1, 3, 3, 1, 4, 2, 1, 2, 5, 1, 6, 4, 1, 3, 2, 1, 2, 3, 1, 6, 4, 1, 5, 2, 1, 2, 5, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Sep 29 2003

Keywords

Comments

It is conjectured that an integer is always reached.

Crossrefs

Programs

  • Maple
    c2 := proc(x,y) x*ceil(y); end; r := 5/3; ch := proc(x) local n,y; global r; y := c2(r,x); for n from 1 to 20 do if whattype(y) = 'integer' then RETURN([x,n,y]); else y := c2(r,y); fi; od: RETURN(['NULL','NULL','NULL']); end; [seq(ch(n)[2],n=1..100)];
  • Python
    from fractions import Fraction
    def A087707(n):
        x, c = Fraction(n), 0
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._ceil_(),3)
            c += 1
        return c # Chai Wah Wu, Sep 02 2023

A087708 First integer > n reached under iteration of map x -> (5/3)*ceiling(x) when started at n, or -1 if no such integer is ever reached.

Original entry on oeis.org

20, 20, 5, 20, 15, 10, 20, 40, 15, 1770, 90, 20, 290, 40, 25, 45, 1770, 30, 90, 95, 35, 290, 65, 40, 70, 345, 45, 220, 1770, 50, 145, 90, 55, 95, 165, 60, 290, 17845, 65, 520, 115, 70, 120, 345, 75, 215, 220, 80, 1770, 140, 85, 145, 415, 90, 715, 1215, 95, 270, 165, 100, 170
Offset: 1

Views

Author

N. J. A. Sloane, Sep 29 2003

Keywords

Comments

It is conjectured that an integer is always reached.

Crossrefs

Programs

  • Maple
    c2 := proc(x,y) x*ceil(y); end; r := 5/3; ch := proc(x) local n,y; global r; y := c2(r,x); for n from 1 to 20 do if whattype(y) = 'integer' then RETURN([x,n,y]); else y := c2(r,y); fi; od: RETURN(['NULL','NULL','NULL']); end; [seq(ch(n)[3],n=1..100)];
  • Python
    from fractions import Fraction
    def A087708(n):
        x = Fraction(n)
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._ceil_(),3)
        return int(x) # Chai Wah Wu, Sep 02 2023

A365367 Number of steps for iteration of map x -> (5/3)*round(x) to reach an integer > n when started at n, or -1 if no such integer is ever reached.

Original entry on oeis.org

3, 2, 1, 3, 15, 1, 2, 14, 1, 5, 2, 1, 13, 4, 1, 2, 4, 1, 5, 2, 1, 12, 3, 1, 2, 3, 1, 3, 2, 1, 3, 4, 1, 2, 4, 1, 11, 2, 1, 5, 6, 1, 2, 8, 1, 4, 2, 1, 4, 3, 1, 2, 3, 1, 3, 2, 1, 3, 5, 1, 2, 10, 1, 4, 2, 1, 4, 5, 1, 2, 6, 1, 7, 2, 1, 5, 3, 1, 2, 3, 1, 3, 2, 1, 3
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Comments

Conjecture: an integer will always be reached, i.e. a(n) > 0 for all n.

Crossrefs

Programs

  • Python
    from fractions import Fraction
    def A365367(n):
        x, c = Fraction(n), 0
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._round_(),3)
            c += 1
        return c

A365368 First integer > n reached under iteration of map x -> (5/3)*round(x) when started at n, or -1 if no such integer is ever reached.

Original entry on oeis.org

5, 5, 5, 20, 10245, 10, 20, 10245, 15, 130, 30, 20, 10245, 105, 25, 45, 130, 30, 245, 55, 35, 10245, 105, 40, 70, 120, 45, 130, 80, 50, 145, 245, 55, 95, 270, 60, 10245, 105, 65, 520, 870, 70, 120, 2605, 75, 355, 130, 80, 380, 230, 85, 145, 245, 90, 255, 155, 95
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Comments

Conjecture: an integer will always be reached, i.e. a(n) > 0 for all n.

Crossrefs

Programs

  • Python
    from fractions import Fraction
    def A365368(n):
        x = Fraction(n)
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._round_(),3)
        return int(x)

A365369 A365368/5, except when A365368(n) = -1, then a(n) = -1.

Original entry on oeis.org

1, 1, 1, 4, 2049, 2, 4, 2049, 3, 26, 6, 4, 2049, 21, 5, 9, 26, 6, 49, 11, 7, 2049, 21, 8, 14, 24, 9, 26, 16, 10, 29, 49, 11, 19, 54, 12, 2049, 21, 13, 104, 174, 14, 24, 521, 15, 71, 26, 16, 76, 46, 17, 29, 49, 18, 51, 31, 19, 54, 151, 20, 34, 2049, 21, 99, 36
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Crossrefs

Programs

  • Python
    from fractions import Fraction
    def A365369(n):
        x = Fraction(n)
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._round_(),3)
        return int(x)//5

A365370 Positions of records in A365367.

Original entry on oeis.org

1, 5, 415, 635, 15935, 60971, 275039, 514661, 2857994, 14179544, 170794880, 2382918520
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Comments

Numbers k such that iteration of the map x -> (5/3)*round(x) starting at x = k takes more steps to reach an integer > k than it does for any number from 1 to k - 1.

Crossrefs

Formula

A365367(a(n)) = A365371(n).

A365371 Record values of A365367.

Original entry on oeis.org

3, 15, 17, 21, 24, 28, 32, 35, 37, 45, 50, 55
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Comments

Numbers v = A365367(k) such that A365367(m) < v for 1 <= m < k.

Crossrefs

Formula

a(n) = A365367(A365370(n)).
Showing 1-9 of 9 results.