This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087710 #20 Aug 11 2025 23:08:39 %S A087710 6,10,14,7,8,31,35,17,43,40,229,248,212,818,799,733,151,2191,1139, %T A087710 20894,877,6835,20528,34627,19687,91790,34502,367558,85336,46375, %U A087710 1342349,134683,109057,2758327,5921086,1655564,18147329,11934733,1315376,1463921,39945479 %N A087710 Least k >= 6 such that A087666(k) = n. %C A087710 A087666: Consider the recurrence b(0) = n/3, b(n) = b(n-1)*floor(b(n-1)); sequence gives number of steps to reach an integer, or -1 if no integer is ever reached. - _Robert G. Wilson v_, Oct 10 2003 & Mar 10 2004 %H A087710 Chai Wah Wu, <a href="/A087710/b087710.txt">Table of n, a(n) for n = 0..60</a> %p A087710 See the Maple program in A087666 for the best way to compute this sequence. - _N. J. A. Sloane_ %t A087710 f[n_] := Block[{c = 1, k = n/3}, If[ IntegerQ[k], 0, While[tn = Floor[k]; tf = k - tn; tn = Mod[tn, 3^100]; k = tn(tn + tf); ! IntegerQ[k], c++ ]; c++ ]]; a = Table[0, {50}]; Do[ b = f[n]; If[ a[[b + 1]] == 0, a[[b + 1]] = n; Print[b, " = ", n]], {n, 6, 10^7}]; a (* _Robert G. Wilson v_, Mar 10 2004, using the idea from _N. J. A. Sloane_'s Maple code in A087666 *) %Y A087710 Cf. A087666, A086336, A087663. %K A087710 nonn %O A087710 0,1 %A A087710 _Benoit Cloitre_, Sep 30 2003 %E A087710 More terms from _Robert G. Wilson v_, Oct 10 2003, Mar 10 2004