cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087739 a(1)=1; a(2)=2; for n > 2, a(n) satisfies a(S(n))=n and a(k)=n-1 for S(n-1) < k < S(n) where S(n) = a(1) + a(2) + ... + a(n).

This page as a plain text file.
%I A087739 #14 Aug 22 2025 00:14:15
%S A087739 1,2,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,9,10,10,10,
%T A087739 10,10,11,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,
%U A087739 14,14,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,17,17,18,18
%N A087739 a(1)=1; a(2)=2; for n > 2, a(n) satisfies a(S(n))=n and a(k)=n-1 for S(n-1) < k < S(n) where S(n) = a(1) + a(2) + ... + a(n).
%F A087739 Limit_{n->oo} a(n)*n/S(n) = phi = (1+sqrt(5))/2; a(n) is asymptotic to phi^(2-phi)*n^(phi-1) as the Golomb sequence A001462; more precisely A001462(n) - a(n) = 0 or 1.
%F A087739 For n > 2, a(n) = A001462(n-1).
%e A087739 a(a(1) + a(2) + a(3)) = 3 and a(1) + a(2) + a(3) = 5, hence a(5)=3. And since a(1) + a(2) < 4 < a(1) + a(2) + a(3) we have a(4) = 3 - 1 = 2.
%Y A087739 Cf. A001462.
%K A087739 nonn
%O A087739 1,2
%A A087739 _Benoit Cloitre_, Oct 01 2003