This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087748 #17 Aug 09 2017 10:37:50 %S A087748 1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,1,1,1,0,0,0,0,1,1, %T A087748 1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,1,0,0, %U A087748 0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,1 %N A087748 Triangle formed by reading triangle of Stirling numbers of the first kind (A048994) mod 2. %D A087748 Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004). - From _N. J. A. Sloane_, Jun 03 2012 %H A087748 Bill Gosper, <a href="/A008275/a008275.png">Colored illustrations of triangle of Stirling numbers of first kind read mod 2, 3, 4, 5, 6, 7</a> %F A087748 T(n, k) = A087755(n, k) = A048994(n, k) mod 2 = A047999([n/2], k-[(n+1)/2]) = T(n-2, k-2) XOR T(n-2, k-1) with T(0, 0) = T(1, 1) = 1 and T(1, 0) = 0; T(2n, k) = T(2n-1, k-1) XOR T(2n-1, k); T(2n+1, k) = T(2n, k-1). - _Henry Bottomley_, Dec 01 2003 %e A087748 Triangle begins: %e A087748 1, %e A087748 0, 1, %e A087748 0, 1, 1, %e A087748 0, 0, 1, 1, %e A087748 0, 0, 1, 0, 1, %e A087748 0, 0, 0, 1, 0, 1, %e A087748 0, 0, 0, 1, 1, 1, 1, %e A087748 0, 0, 0, 0, 1, 1, 1, 1, %e A087748 0, 0, 0, 0, 1, 0, 0, 0, 1, %e A087748 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, %e A087748 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, %e A087748 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, %e A087748 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, %e A087748 ... %Y A087748 Cf. A008275, A008276, A048994, A087755. %Y A087748 Also parity of triangles A049444, A049459, A051338, A051379, A051523. %K A087748 easy,nonn,tabl %O A087748 0,1 %A A087748 _Philippe Deléham_, Oct 02 2003 %E A087748 Edited and extended by _Henry Bottomley_, Dec 01 2003