cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087748 Triangle formed by reading triangle of Stirling numbers of the first kind (A048994) mod 2.

This page as a plain text file.
%I A087748 #17 Aug 09 2017 10:37:50
%S A087748 1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,1,1,1,0,0,0,0,1,1,
%T A087748 1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,1,0,0,
%U A087748 0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,1
%N A087748 Triangle formed by reading triangle of Stirling numbers of the first kind (A048994) mod 2.
%D A087748 Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004). - From _N. J. A. Sloane_, Jun 03 2012
%H A087748 Bill Gosper, <a href="/A008275/a008275.png">Colored illustrations of triangle of Stirling numbers of first kind read mod 2, 3, 4, 5, 6, 7</a>
%F A087748 T(n, k) = A087755(n, k) = A048994(n, k) mod 2 = A047999([n/2], k-[(n+1)/2]) = T(n-2, k-2) XOR T(n-2, k-1) with T(0, 0) = T(1, 1) = 1 and T(1, 0) = 0; T(2n, k) = T(2n-1, k-1) XOR T(2n-1, k); T(2n+1, k) = T(2n, k-1). - _Henry Bottomley_, Dec 01 2003
%e A087748 Triangle begins:
%e A087748 1,
%e A087748 0, 1,
%e A087748 0, 1, 1,
%e A087748 0, 0, 1, 1,
%e A087748 0, 0, 1, 0, 1,
%e A087748 0, 0, 0, 1, 0, 1,
%e A087748 0, 0, 0, 1, 1, 1, 1,
%e A087748 0, 0, 0, 0, 1, 1, 1, 1,
%e A087748 0, 0, 0, 0, 1, 0, 0, 0, 1,
%e A087748 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
%e A087748 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
%e A087748 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
%e A087748 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
%e A087748 ...
%Y A087748 Cf. A008275, A008276, A048994, A087755.
%Y A087748 Also parity of triangles A049444, A049459, A051338, A051379, A051523.
%K A087748 easy,nonn,tabl
%O A087748 0,1
%A A087748 _Philippe Deléham_, Oct 02 2003
%E A087748 Edited and extended by _Henry Bottomley_, Dec 01 2003