This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087752 #40 Jul 08 2025 22:25:07 %S A087752 1,49,2401,117649,5764801,282475249,13841287201,678223072849, %T A087752 33232930569601,1628413597910449,79792266297612001, %U A087752 3909821048582988049,191581231380566414401,9387480337647754305649,459986536544739960976801,22539340290692258087863249,1104427674243920646305299201 %N A087752 Powers of 49. %C A087752 Same as Pisot sequences E(1, 49), L(1, 49), P(1, 49), T(1, 49). Essentially same as Pisot sequences E(49, 2401), L(49, 2401), P(49, 2401), T(49, 2401). See A008776 for definitions of Pisot sequences. %C A087752 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 49-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011 %H A087752 T. D. Noe, <a href="/A087752/b087752.txt">Table of n, a(n) for n = 0..100</a> %H A087752 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A087752 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (49). %F A087752 G.f.: 1/(1-49*x). - _Philippe Deléham_, Nov 24 2008 %F A087752 From _Vincenzo Librandi_, Nov 21 2010: (Start) %F A087752 a(n) = 49^n. %F A087752 a(n) = 49*a(n-1), a(0)=1. (End) %F A087752 From _Elmo R. Oliveira_, Jul 08 2025: (Start) %F A087752 E.g.f.: exp(49*x). %F A087752 a(n) = A000420(A005843(n)). (End) %t A087752 49^Range[0,20] (* or *) Join[{1},NestList[49#&,49,20]] (* _Harvey P. Dale_, May 10 2019 *) %o A087752 (Magma) [49^n: n in [0..20]]; // _Vincenzo Librandi_, Nov 21 2010 %o A087752 (Maxima) makelist(49^n,n,0,20); /* _Martin Ettl_, Nov 12 2012 */ %o A087752 (PARI) a(n)=49^n \\ _M. F. Hasler_, Apr 19 2015 %Y A087752 Bisection of A000420. %Y A087752 Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48). %Y A087752 Cf. A005843, A008776. %K A087752 easy,nonn %O A087752 0,2 %A A087752 Douglas Winston (douglas.winston(AT)srupc.com), Oct 02 2003 %E A087752 Edited by _M. F. Hasler_, Apr 19 2015