A087755 Triangle read by rows: Stirling numbers of the first kind (A008275) mod 2.
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
References
- Das, Sajal K., Joydeep Ghosh, and Narsingh Deo. "Stirling networks: a versatile combinatorial topology for multiprocessor systems." Discrete applied mathematics 37 (1992): 119-146. See p. 122. - N. J. A. Sloane, Nov 20 2014
Programs
-
PARI
p = 2; s=14; S1T = matrix(s,s,n,k, if(k==1,(-1)^(n-1)*(n-1)!)); for(n=2,s,for(k=2,n, S1T[n,k]=-(n-1)*S1T[n-1,k]+S1T[n-1,k-1])); S1TMP = matrix(s,s,n,k, S1T[n,k]%p); for(n=1,s,for(k=1,n,print1(S1TMP[n,k]," "));print()) /* Gerald McGarvey, Oct 17 2009 */
Formula
T(n, k) = A087748(n, k) = A008275(n, k) mod 2 = A047999([n/2], k-[(n+1)/ 2]) = T(n-2, k-2) XOR T(n-2, k-1) with T(1, 1) = T(2, 1) = T(2, 2) = 1; T(2n, k) = T(2n-1, k-1) XOR T(2n-1, k); T(2n+1, k) = T(2n, k-1). - Henry Bottomley, Dec 01 2003
Extensions
Edited and extended by Henry Bottomley, Dec 01 2003
Comments