A087780 Number of non-congruent solutions to x^2 == 2 mod n.
1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0
Offset: 1
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[2, e_] := Boole[e == 1]; f[p_, e_] := If[MemberQ[{1, 7}, Mod[p, 8]], 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, (f[i,2] == 1), if(f[i,1]%8 == 1 || f[i,1]%8 == 7, 2, 0)));} \\ Amiram Eldar, Nov 21 2023
-
Sage
def A087780(n) : res = 1 for (p, m) in factor(n) : if p % 8 in [1, 7] : res *= 2 elif not (p==2 and m==1) : return 0 return res # Eric M. Schmidt, Apr 20 2013
Formula
Multiplicative with a(p^m) = 2 for p == 1, 7 (mod 8); a(p^m) = 0 for p == 3, 5 (mod 8); a(2^1) = 1; a(2^m) = 0 for m > 1. - Eric M. Schmidt, Apr 20 2013
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(sqrt(2)+1)/(sqrt(2)*zeta(2)) = A196525/A013661 = 0.37887551404073012021... . - Amiram Eldar, Nov 21 2023
Extensions
More terms from David Wasserman, Jun 17 2005