This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087797 #23 Aug 09 2024 15:14:50 %S A087797 2,3,4,5,7,8,9,11,13,17,19,23,25,27,29,31,37,41,43,47,49,53,59,61,67, %T A087797 71,73,79,83,89,97,101,103,107,109,113,121,125,127,131,137,139,149, %U A087797 151,157,163,167,169,173,179,181,191,193,197,199,211,223,227,229,233,239,241 %N A087797 Primes, squares of primes and cubes of primes. %C A087797 Union of A000040 and A168363. - _Chai Wah Wu_, Aug 09 2024 %H A087797 Vincenzo Librandi, <a href="/A087797/b087797.txt">Table of n, a(n) for n = 1..1000</a> %F A087797 a(n) ~ n log n. - _Charles R Greathouse IV_, Oct 19 2015 %t A087797 m=400;Union[Prime[Range[PrimePi[m]]],Prime[Range[PrimePi[m^(1/2)]]]^2,Prime[Range[PrimePi[m^(1/3)]]]^3] (* _Vladimir Joseph Stephan Orlovsky_, Apr 11 2011 *) %t A087797 With[{nn=70},Take[Union[Flatten[{#,#^2,#^3}&/@Prime[Range[nn]]]],nn]] (* _Harvey P. Dale_, Oct 16 2012 *) %o A087797 (PARI) is(n)=my(t=isprimepower(n)); t && t<4 \\ _Charles R Greathouse IV_, Oct 19 2015 %o A087797 (Python) %o A087797 from math import isqrt %o A087797 from sympy import primepi, integer_nthroot %o A087797 def A087797(n): %o A087797 def f(x): return n+x-primepi(x)-primepi(isqrt(x))-primepi(integer_nthroot(x,3)[0]) %o A087797 m, k = n, f(n) %o A087797 while m != k: %o A087797 m, k = k, f(k) %o A087797 return int(m) # _Chai Wah Wu_, Aug 09 2024 %Y A087797 Cf. A000040, A000430, A002760, A168363. %K A087797 nonn %O A087797 1,1 %A A087797 _Benoit Cloitre_, Oct 10 2003