This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087803 #53 May 08 2025 08:54:15 %S A087803 1,2,4,8,17,37,85,200,486,1205,3047,7813,20299,53272,141083,376464, %T A087803 1011311,2732470,7421146,20247374,55469206,152524387,420807242, %U A087803 1164532226,3231706871,8991343381,25075077710,70082143979,196268698287,550695545884,1547867058882 %N A087803 Number of unlabeled rooted trees with at most n nodes. %C A087803 Number of equations (order conditions) that must be satisfied to achieve order n in the construction of a Runge-Kutta method for the numerical solution of an ordinary differential equation. - _Hugo Pfoertner_, Oct 12 2003 %D A087803 Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations, (1987) Wiley, Chichester %D A087803 See link for more references. %H A087803 Alois P. Heinz, <a href="/A087803/b087803.txt">Table of n, a(n) for n = 1..1000</a> %H A087803 A. Cayley, <a href="http://www.jstor.org/stable/2369158">On the analytical forms called trees</a>, Amer. J. Math., 4 (1881), 266-268. %H A087803 I. Th. Famelis, S. N. Papakostas and Ch. Tsitouras, <a href="http://users.ntua.gr/tsitoura/SDRKOCfi.pdf">Symbolic Derivation of Runge-Kutta Order Conditions.</a> %H A087803 R. K. Guy and J. L. Selfridge, <a href="/A003018/a003018.pdf">The nesting and roosting habits of the laddered parenthesis</a> (annotated cached copy). %H A087803 R. K. Guy and J. L. Selfridge, <a href="http://www.jstor.org/stable/2319392">The nesting and roosting habits of the laddered parenthesis</a>, Amer. Math. Monthly 80 (8) (1973), 868-876. %H A087803 Florian Ingels, <a href="https://arxiv.org/abs/2309.14441">Revisiting Tree Isomorphism: An Algorithmic Bric-à-Brac</a>, arXiv:2309.14441 [cs.DS], 2023-2024. See p. 17. %H A087803 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RootedTree.html">Rooted Tree</a>. %H A087803 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>. %F A087803 a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.664861031240097088000569... . - _Vaclav Kotesovec_, Sep 11 2014 %F A087803 In the asymptotics above the constant c = A187770 / (1 - 1 / A051491). - _Vladimir Reshetnikov_, Aug 12 2016 %p A087803 with(numtheory): %p A087803 b:= proc(n) option remember; local d, j; `if`(n<=1, n, %p A087803 (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) %p A087803 end: %p A087803 a:= proc(n) option remember; b(n) +`if`(n<1, 0, a(n-1)) end: %p A087803 seq(a(n), n=1..50); # _Alois P. Heinz_, Aug 21 2012 %t A087803 b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[b[n - j]* DivisorSum[j, # *b[#]&], {j, 1, n-1}]/(n-1); a[1] = 1; a[n_] := a[n] = b[n] + a[n-1]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Nov 10 2015, after _Alois P. Heinz_ *) %t A087803 t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n]; Table[a[n], {n, 40}] (* _Vladimir Reshetnikov_, Aug 12 2016 *) %t A087803 Needs["NumericalDifferentialEquationAnalysis`"] %t A087803 Drop[Accumulate[Join[{0},ButcherTreeCount[20]]],1] (* _Peter Luschny_, Aug 18 2016 *) %o A087803 (PARI) a000081(k) = local(A = x); if( k<1, 0, for( j=1, k-1, A /= (1 - x^j + x * O(x^k))^polcoeff(A, j)); polcoeff(A, k)); %o A087803 a(n) = sum(k=1, n, a000081(k)) \\ _Altug Alkan_, Nov 10 2015 %o A087803 (Sage) %o A087803 def A087803_list(len): %o A087803 a, t = [1], [0,1] %o A087803 for n in (1..len-1): %o A087803 S = [t[n-k+1]*sum(d*t[d] for d in divisors(k)) for k in (1..n)] %o A087803 t.append(sum(S)//n) %o A087803 a.append(a[-1]+t[-1]) %o A087803 return a %o A087803 A087803_list(20) # _Peter Luschny_, Aug 18 2016 %Y A087803 a(n) = Sum_(k=1..n) A000081(k). %Y A087803 Cf. A255170, A187770, A051491. %K A087803 nonn %O A087803 1,2 %A A087803 _Hugo Pfoertner_, Oct 12 2003 %E A087803 Corrected and extended by _Alois P. Heinz_, Aug 21 2012 %E A087803 Renamed (old name is in comments) by _Vladimir Reshetnikov_, Aug 23 2016