This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087897 #125 Feb 16 2025 08:32:51 %S A087897 1,0,0,1,0,1,1,1,1,2,2,2,3,3,4,5,5,6,8,8,10,12,13,15,18,20,23,27,30, %T A087897 34,40,44,50,58,64,73,83,92,104,118,131,147,166,184,206,232,256,286, %U A087897 320,354,394,439,485,538,598,660,730,809,891,984,1088,1196,1318,1454,1596,1756 %N A087897 Number of partitions of n into odd parts greater than 1. %C A087897 Also number of partitions of n into distinct parts which are not powers of 2. %C A087897 Also number of partitions of n into distinct parts such that the two largest parts differ by 1. %C A087897 Also number of partitions of n such that the largest part occurs an odd number of times that is at least 3 and every other part occurs an even number of times. Example: a(10) = 2 because we have [2,2,2,1,1,1,1] and [2,2,2,2,2]. - _Emeric Deutsch_, Mar 30 2006 %C A087897 Also difference between number of partitions of 1+n into distinct parts and number of partitions of n into distinct parts. - Philippe LALLOUET, May 08 2007 %C A087897 In the Berndt reference replace {a -> -x, q -> x} in equation (3.1) to get f(x). G.f. is 1 - x * (1 - f(x)). %C A087897 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %C A087897 Also number of symmetric unimodal compositions of n+3 where the maximal part appears three times. - _Joerg Arndt_, Jun 11 2013 %C A087897 Let c(n) = number of palindromic partitions of n whose greatest part has multiplicity 3; then c(n) = a(n-3) for n>=3. - _Clark Kimberling_, Mar 05 2014 %C A087897 From _Gus Wiseman_, Aug 22 2021: (Start) %C A087897 Also the number of integer partitions of n - 1 whose parts cover an interval of positive integers starting with 2. These partitions are ranked by A339886. For example, the a(6) = 1 through a(16) = 5 partitions are: %C A087897 32 222 322 332 432 3322 3332 4332 4432 5432 43332 %C A087897 2222 3222 22222 4322 33222 33322 33332 44322 %C A087897 32222 222222 43222 43322 333222 %C A087897 322222 332222 432222 %C A087897 2222222 3222222 %C A087897 (End) %D A087897 J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I %H A087897 Chai Wah Wu, <a href="/A087897/b087897.txt">Table of n, a(n) for n = 0..10000</a> (n = 0..1000 from Alois P. Heinz) %H A087897 C. Ballantine and M. Merca, <a href="https://www.researchgate.net/publication/289250007_Padovan_numbers_as_sums_over_partitions_into_odd_parts"> Padovan numbers as sums over partitions into odd parts</a>, Journal of Inequalities and Applications, (2016) 2016:1; <a href="https://doi.org/10.1186/s13660-015-0952-5">doi</a>. %H A087897 B. C. Berndt, B. Kim, and A. J. Yee, <a href="http://dx.doi.org/10.1016/j.jcta.2009.07.005">Ramanujan's lost notebook: Combinatorial proofs of identities associated with Heine's transformation or partial theta functions</a>, J. Comb. Thy. Ser. A, 117 (2010), 957-973. %H A087897 Howard D. Grossman, <a href="https://www.jstor.org/stable/3029861">Problem 228</a>, Mathematics Magazine, 28 (1955), p. 160. %H A087897 R. K. Guy, <a href="http://www.jstor.org/stable/3609388">Two theorems on partitions</a>, Math. Gaz., 42 (1958), 84-86. Math. Rev. 20 #3110. %H A087897 Cristiano Husu, <a href="https://arxiv.org/abs/1804.09883">The butterfly sequence: the second difference sequence of the numbers of integer partitions with distinct parts, its pentagonal number structure, its combinatorial identities and the cyclotomic polynomials 1-x and 1+x+x^2</a>, arXiv:1804.09883 [math.NT], 2018. %H A087897 James Mc Laughlin, Andrew V. Sills, and Peter Zimmer, <a href="https://doi.org/10.37236/36">Rogers-Ramanujan-Slater Type Identities</a>, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. %H A087897 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A087897 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A087897 Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q. %F A087897 Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function. %F A087897 G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - _Michael Somos_, Jun 20 2012 %F A087897 G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)). %F A087897 G.f.: Product_{k >= 1, k not a power of 2} (1+x^k). %F A087897 G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - _Emeric Deutsch_, Mar 30 2006 %F A087897 a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - _Vaclav Kotesovec_, Aug 30 2015, extended Nov 04 2016 %F A087897 G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - _Peter Bala_, Jan 15 2021 %F A087897 G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - _Peter Bala_, Feb 02 2021 %F A087897 a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - _Gregory L. Simay_, Sep 22 2023 %e A087897 1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ... %e A087897 q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ... %e A087897 a(10)=2 because we have [7,3] and [5,5]. %e A087897 From _Joerg Arndt_, Jun 11 2013: (Start) %e A087897 There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times: %e A087897 01: [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ] %e A087897 02: [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ] %e A087897 03: [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ] %e A087897 04: [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ] %e A087897 05: [ 1 1 1 2 5 5 5 2 1 1 1 ] %e A087897 06: [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ] %e A087897 07: [ 1 1 3 5 5 5 3 1 1 ] %e A087897 08: [ 1 1 7 7 7 1 1 ] %e A087897 09: [ 1 2 2 5 5 5 2 2 1 ] %e A087897 10: [ 1 4 5 5 5 4 1 ] %e A087897 11: [ 2 2 2 2 3 3 3 2 2 2 2 ] %e A087897 12: [ 2 3 5 5 5 3 2 ] %e A087897 13: [ 2 7 7 7 2 ] %e A087897 (End) %e A087897 From _Gus Wiseman_, Feb 16 2021: (Start) %e A087897 The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449. %e A087897 7 53 9 55 B 75 D 77 F 97 H 99 J %e A087897 333 73 533 93 553 95 555 B5 755 B7 775 %e A087897 3333 733 B3 753 D3 773 D5 955 %e A087897 5333 933 5533 953 F3 973 %e A087897 33333 7333 B33 5553 B53 %e A087897 53333 7533 D33 %e A087897 9333 55333 %e A087897 333333 73333 %e A087897 (End) %p A087897 To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6); %p A087897 # second Maple program: %p A087897 b:= proc(n, i) option remember; `if`(n=0, 1, %p A087897 `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i)))) %p A087897 end: %p A087897 a:= n-> b(n, n-1+irem(n, 2)): %p A087897 seq(a(n), n=0..80); # _Alois P. Heinz_, Jun 11 2013 %t A087897 max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* _Jean-François Alcover_, Dec 16 2011, after _Emeric Deutsch_ *) %t A087897 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Apr 01 2015, after _Alois P. Heinz_ *) %t A087897 Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* _Vaclav Kotesovec_, Dec 01 2015 *) %t A087897 Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* _Gus Wiseman_, Feb 16 2021 *) %o A087897 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* _Michael Somos_, Nov 13 2011 */ %o A087897 (Haskell) %o A087897 a087897 = p [3,5..] where %o A087897 p [] _ = 0 %o A087897 p _ 0 = 1 %o A087897 p ks'@(k:ks) m | m < k = 0 %o A087897 | otherwise = p ks' (m - k) + p ks m %o A087897 -- _Reinhard Zumkeller_, Aug 12 2011 %o A087897 (Python) %o A087897 from functools import lru_cache %o A087897 @lru_cache(maxsize=None) %o A087897 def A087897_T(n,k): %o A087897 if n==0: return 1 %o A087897 if k<3 or n<0: return 0 %o A087897 return A087897_T(n,k-2)+A087897_T(n-k,k) %o A087897 def A087897(n): return A087897_T(n,n-(n&1^1)) # _Chai Wah Wu_, Sep 23 2023, after _Alois P. Heinz_ %Y A087897 The ordered version is A000931. %Y A087897 Partitions with no ones are counted by A002865, ranked by A005408. %Y A087897 The even version is A035363, ranked by A066207. %Y A087897 The version for factorizations is A340101. %Y A087897 Partitions whose only even part is the smallest are counted by A341447. %Y A087897 The Heinz numbers of these partitions are given by A341449. %Y A087897 A000009 counts partitions into odd parts, ranked by A066208. %Y A087897 A025147 counts strict partitions with no 1's. %Y A087897 A025148 counts strict partitions with no 1's or 2's. %Y A087897 A026804 counts partitions whose smallest part is odd, ranked by A340932. %Y A087897 A027187 counts partitions with even length/maximum, ranks A028260/A244990. %Y A087897 A027193 counts partitions with odd length/maximum, ranks A026424/A244991. %Y A087897 A058695 counts partitions of odd numbers, ranked by A300063. %Y A087897 A058696 counts partitions of even numbers, ranked by A300061. %Y A087897 A340385 counts partitions with odd length and maximum, ranked by A340386. %Y A087897 Cf. A000041, A003114, A039900, A160786, A257991/A257992, A264396, A300272, A339662, A339737, A339886. %K A087897 nonn,easy %O A087897 0,10 %A A087897 _N. J. A. Sloane_, Dec 04 2003