A087948 Sum of successive remainders in computing euclidean algorithm for (1, -1/sqrt(-n)) has real and imaginary parts equal.
1, 4, 5, 9, 16, 17, 18, 25, 36, 37, 39, 49, 64, 65, 66, 68, 81, 100, 101, 105, 121, 126, 144, 145, 146, 147, 150, 169, 196, 197, 203, 225, 256, 257, 258, 260, 264, 289, 324, 325, 327, 333, 361, 400, 401, 402, 405, 410, 441, 484, 485, 495, 529, 576, 577, 578, 579
Offset: 1
Keywords
Examples
kappa(-1/sqrt(-105)) = -(1/210 + (1/210)i)*sqrt(105).
Programs
-
MuPAD
kappa_neg_1_over_comp_sqrt := proc(n) local a,b,i,p; begin if (a := -sqrt(-n)+ceil(sqrt(-n))) = 0 then return(0) end_if: i := a := simplify(1/a,sqrt); p := 1; b := 0; repeat p := p*a; b := b*a+a-floor(a); until (a := simplify(1/(a-floor(a)),sqrt)) = i end_repeat: return(simplify(-(b/(p-1) + 1/a)/sqrt(-n),sqrt)); end_proc:
Comments