This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087962 #14 May 21 2022 08:30:03 %S A087962 0,1,-2,15,-220,5025,-159606,6593041,-338977416,21032339985, %T A087962 -1539275365450,130569297615801,-12660181105282668, %U A087962 1387510663815243721,-170295099173001030606,23224872340978381412865,-3496270002640563444940816,577651124287028261031912609 %N A087962 Satisfies Sum_{n>=0} a(n)*x^n/n! = log(f(x)) = series reversion of x*f(x), where f(x*f(x)) = exp(x) and f(x) = Sum_{n>=0} A087961(n)*x^n/n!. %C A087962 This is the series reversion of xf(x) where f(xf(x))=exp(x), exp(xf(x))=f(xf(x)*exp(x)), f(log(x)*f(log(x)))=x and f(x)=sum(n>=0, A087961(n)*x^n/n!). Are these series convergent anywhere besides at x=0? %H A087962 Alois P. Heinz, <a href="/A087962/b087962.txt">Table of n, a(n) for n = 0..282</a> %e A087962 f(x) = 1 +1x -1x^2/2! +10x^3/3! -159x^4/4! +3816x^5/5! -125375x^6/6! +-... %e A087962 where f(xf(x)) = exp(x). %p A087962 b:= proc(n, k) option remember; `if`(n=0, 1/k, add(k* %p A087962 b(j-1, j)*j*b(n-j, k)*binomial(n-1, j-1), j=1..n)) %p A087962 end: %p A087962 a:= n-> -b(n-1, n)*n*(-1)^n: %p A087962 seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 21 2019 %t A087962 b[n_, k_] := b[n, k] = If[n == 0, 1/k, Sum[k* %t A087962 b[j-1, j]*j*b[n-j, k]*Binomial[n-1, j-1], {j, 1, n}]]; %t A087962 a[n_] := -b[n-1, n]*n*(-1)^n; %t A087962 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, May 21 2022, after _Alois P. Heinz_ *) %Y A087962 Cf. A087961. %K A087962 sign %O A087962 0,3 %A A087962 _Paul D. Hanna_, Sep 18 2003