This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087977 #41 Jun 23 2025 10:25:19 %S A087977 210,7314,37960,134043,357642,1217250,1217250,14273478,44939642, %T A087977 76067298,163459742,547163235,2081479430,2771263512,11715712410, %U A087977 17911205580,56608713884,118968284928,118968284928,585927201062,585927201062,585927201062,585927201062 %N A087977 a(n) is the first term in the first chain of at least n consecutive numbers each having exactly four distinct prime factors. %C A087977 Eggleton and MacDougall show that there are no more than 419 terms in this sequence. - _T. D. Noe_, Oct 13 2008 %C A087977 a(28) > 2 * 10^15. - _Toshitaka Suzuki_, Jun 22 2025 %H A087977 Toshitaka Suzuki, <a href="/A087977/b087977.txt">Table of n, a(n) for n = 1..27</a> (terms 1..23 from Donovan Johnson). %H A087977 Roger B. Eggleton and James A. MacDougall, <a href="http://www.jstor.org/stable/27643119">Consecutive integers with equally many principal divisors</a>, Math. Mag. 81 (2008), 235-248. %e A087977 a(6) = a(7) = 1217250 because the relevant 7 successive numbers have 4 distinct prime factors: %e A087977 1217250 = 2 * 3^2 * 5^3 * 541; %e A087977 1217251 = 7 * 17 * 53 * 193; %e A087977 1217252 = 2^2 * 23 * 101 * 131; %e A087977 1217253 = 3 * 47 * 89 * 97; %e A087977 1217254 = 2 * 19 * 103 * 311; %e A087977 1217255 = 5 * 13 * 61 * 307; %e A087977 1217256 = 2^3 * 3 * 67 * 757. %t A087977 k=1; Do[While[Union[Table[Length[FactorInteger[i]], {i, k, k+n-1}]]!={4}, k++ ]; Print[k], {n, 1, 8}] %t A087977 Module[{d4=Table[If[PrimeNu[n]==4,1,0],{n,143*10^5}]},Flatten[Table[ SequencePosition[d4,PadRight[{},n,1],1],{n,8}],1][[All,1]]] (* Requires Mathematica version 10 or later *) (* This generates the first 8 terms of the sequence *) (* _Harvey P. Dale_, Aug 25 2017 *) %Y A087977 Cf. A080569 (m=3), A064708 (m=2). %Y A087977 Cf. A087978, A138206, A138207, A154573. %K A087977 nonn,fini %O A087977 1,1 %A A087977 _Labos Elemer_, Sep 26 2003 %E A087977 More terms from _Don Reble_, Sep 29 2003 %E A087977 a(13)-a(19) from _Donovan Johnson_, Mar 06 2008 %E A087977 a(20)-a(23) from _Donovan Johnson_, Jan 15 2009