This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088000 #29 May 01 2021 08:03:19 %S A088000 1,3,4,7,6,12,8,15,13,8,12,16,1,10,9,15,1,21,1,12,11,36,1,24,6,3,13, %T A088000 14,1,17,1,15,48,3,13,25,1,3,4,20,1,19,1,84,18,3,1,24,8,8,4,7,1,21,72, %U A088000 22,4,3,1,21,1,3,20,15,6,144,1,7,4,15,1,33,1,3,9,7,96,12,1,20,13,3,1,23,6,3 %N A088000 a(n) is the sum of the palindromic divisors of n. %H A088000 Indranil Ghosh, <a href="/A088000/b088000.txt">Table of n, a(n) for n = 1..10000</a> %e A088000 n=14: a(14)=1+2+7=10; %e A088000 n=101: a(101)=1+101=102; %p A088000 A088000 := proc(n) %p A088000 a := 0 ; %p A088000 for d in numtheory[divisors](n) do %p A088000 if isA002113(d) then %p A088000 a := a+d ; %p A088000 end if; %p A088000 end do; %p A088000 a ; %p A088000 end proc: %p A088000 seq(A088000(n),n=1..100) ; # _R. J. Mathar_, Sep 09 2015 %t A088000 Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* _Jayanta Basu_, Aug 12 2013 *) %o A088000 (Python) %o A088000 def ispal(n): %o A088000 return n==int(str(n)[::-1]) %o A088000 def A088000(n): %o A088000 s=0 %o A088000 for i in range(1, n+1): %o A088000 if n%i==0 and ispal(i): %o A088000 s+=i %o A088000 return s %o A088000 print([A088000(n) for n in range(1,30)]) # _Indranil Ghosh_, Feb 10 2017 %o A088000 (PARI) a(n) = sumdiv(n, d, my(dd=digits(d)); if (Vecrev(dd) == dd, d)); \\ _Michel Marcus_, Apr 06 2020 %Y A088000 Cf. A062687 (all divisors are palindromic), A087990 (number of palindromic divisors). %K A088000 base,nonn %O A088000 1,2 %A A088000 _Labos Elemer_, Oct 14 2003