cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088026 Number of "sets of even lists" for even n, cf. A000262.

This page as a plain text file.
%I A088026 #31 Feb 19 2022 14:37:35
%S A088026 1,2,36,1560,122640,15150240,2695049280,650948538240,204637027795200,
%T A088026 81098021561356800,39516616693678924800,23204736106751520921600,
%U A088026 16152539421202464036556800,13145716394493318293898240000,12363004898960780220305909760000
%N A088026 Number of "sets of even lists" for even n, cf. A000262.
%H A088026 Vincenzo Librandi, <a href="/A088026/b088026.txt">Table of n, a(n) for n = 0..100</a>
%F A088026 E.g.f.: exp(x^2/(1-x^2)) (even powers only, see PARI code).
%F A088026 E.g.f.: exp(x^2/(1-x^2)) = 4/(2-(x^2/(1-x^2))*G(0))-1 where G(k) = 1 - x^4/(x^4 + 4*(1-x^2)^2*(2*k+1)*(2*k+3)/G(k+1) ) (continued fraction). - _Sergei N. Gladkovskii_, Dec 10 2012
%F A088026 a(n) ~ 2^(2*n) * n^(2*n-1/4) * exp(sqrt(4*n)-2*n-1/2). - _Vaclav Kotesovec_, Feb 25 2014
%F A088026 D-finite with recurrence a(n) -2*(2*n-1)^2*a(n-1) +4*(n-1)*(n-2)*(2*n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Feb 01 2022
%F A088026 a(n) = A206703(2n,n). - _Alois P. Heinz_, Feb 19 2022
%p A088026 b:= proc(n) option remember; `if`(n=0, 1, add((i->
%p A088026       b(n-i)*binomial(n-1, i-1)*i!)(2*j), j=1..n/2))
%p A088026     end:
%p A088026 a:= n-> b(2*n):
%p A088026 seq(a(n), n=0..14);  # _Alois P. Heinz_, Feb 01 2022
%t A088026 Table[n!*SeriesCoefficient[E^(x^2/(1-x^2)),{x,0,n}],{n,0,40,2}] (* _Vaclav Kotesovec_, Feb 25 2014 *)
%o A088026 (PARI)
%o A088026 x='x+O('x^66); /* (half) that many terms */
%o A088026 v=Vec(serlaplace(exp(x^2/(1-x^2))));
%o A088026 vector(#v\2,n, v[2*n-1])
%o A088026 /* _Joerg Arndt_, Jul 29 2012 */
%Y A088026 Cf. A052845, A088009, A206703.
%K A088026 nonn
%O A088026 0,2
%A A088026 _Vladeta Jovovic_, Nov 02 2003
%E A088026 More terms from _Joerg Arndt_, Jul 29 2012.