cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088136 Primes such that sum of first and last digits is prime.

This page as a plain text file.
%I A088136 #12 Apr 24 2024 13:00:23
%S A088136 11,23,29,41,43,47,61,67,83,89,101,131,151,181,191,211,223,229,233,
%T A088136 239,241,251,263,269,271,281,283,293,401,409,419,421,431,433,439,443,
%U A088136 449,457,461,463,467,479,487,491,499,601,607,617,631,641,647,661,677,691
%N A088136 Primes such that sum of first and last digits is prime.
%H A088136 Michael S. Branicky, <a href="/A088136/b088136.txt">Table of n, a(n) for n = 1..10000</a>
%t A088136 Select[Prime[Range[400]],PrimeQ[First[IntegerDigits[#]]+ Last[ IntegerDigits[ #]]]&] (* _Harvey P. Dale_, Jun 23 2017 *)
%o A088136 (Python)
%o A088136 from sympy import isprime, primerange
%o A088136 def ok(p): s = str(p); return isprime(int(s[0]) + int(s[-1]))
%o A088136 def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
%o A088136 print(aupto(691)) # _Michael S. Branicky_, Nov 23 2021
%o A088136 (PARI) select( {is_A088136(p)=isprime(p\10^logint(p,10)+p%10)&&isprime(p)}, primes(99)) \\ _M. F. Hasler_, Apr 23 2024
%Y A088136 Cf. A008040 (primes), A010051 (isprime), A000030 (first digit of n), A010879 (last digit of n).
%Y A088136 Cf. A046704, A007953, A088133, A088134, A088135.
%K A088136 easy,nonn,base
%O A088136 1,1
%A A088136 _Zak Seidov_, Sep 20 2003