This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088157 #23 Feb 16 2025 08:32:51 %S A088157 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %T A088157 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,7,21,2,1,59, %U A088157 5,49,2,19,57,20,45,35,30,0,5,28,50,4,19,50,23,32,10,23,38,16,45,29,6 %N A088157 Value of (n+1)-th digit in sexagesimal representation of n^n. %C A088157 a(n) = d(n) with n^n = Sum(d(k)*60^k: 0 <= d(k) < 60, k >= 0). %H A088157 Charles R Greathouse IV, <a href="/A088157/b088157.txt">Table of n, a(n) for n = 0..10000</a> %H A088157 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sexagesimal.html">Sexagesimal</a> %F A088157 a(n) = floor(n^n / 60^n) mod 60. %e A088157 a(0) = 1, a(k) = 0 for 0 < k < 60 and a(60) = 1. %t A088157 f[n_] := IntegerDigits[n^n, 60, n + 1][[1]]; f[0] = 1; Array[f, 92, 0] (* _Robert G. Wilson v_, Dec 27 2012 *) %o A088157 (PARI) a(n)=lift(chinese(chinese(Mod(n,3^(n+1))^n,Mod(n,4^(n+1))^n), Mod(n,5^(n+1))^n))\60^n \\ _Charles R Greathouse IV_, Dec 27 2012 %o A088157 (Haskell) %o A088157 a088157 n = mod (div (n ^ n) (60 ^ n)) 60 %o A088157 -- _Reinhard Zumkeller_, Mar 14 2014 %Y A088157 Cf. A000312, A088150, A088151, A088152, A088153, A088154, A088155, A088156, A159991. %K A088157 nonn,base,look %O A088157 0,62 %A A088157 _Reinhard Zumkeller_, Sep 20 2003