This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088179 #43 Feb 16 2025 08:32:51 %S A088179 2,7,11,23,47,59,83,107,167,179,211,227,263,331,347,359,383,463,467, %T A088179 479,503,547,563,571,587,691,719,839,859,863,887,911,967,983,1019, %U A088179 1123,1187,1231,1283,1291,1303,1307,1319,1327,1367,1439,1483,1487,1523,1619,1723 %N A088179 Primes p such that mu(p-1) = 1; that is, p-1 is squarefree and has an even number of prime factors, where mu is the Moebius function. %C A088179 It is an unsolved problem to determine if this sequence has a positive density in the primes. - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003 %C A088179 Except for the initial element 2, this sequence seems to be exactly those primes the sum of whose nonquadratic, nonprimitive-root residues is congruent to -1(mod p). - _Dimitri Papadopoulos_, Jan 10 2016 %H A088179 Robert Israel, <a href="/A088179/b088179.txt">Table of n, a(n) for n = 1..10000</a> %H A088179 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MoebiusFunction.html">Moebius Function</a> %p A088179 filter:= proc(p) isprime(p) and numtheory:-mobius(p-1) = 1 end proc: %p A088179 select(filter, [2,seq(i,i=3..2000,2)]); # _Robert Israel_, Feb 03 2016 %t A088179 Select[Prime[Range[400]], MoebiusMu[ #-1]==1&] %o A088179 (PARI) lista(nn) = forprime(p=2, nn, if (moebius(p-1) == 1, print1(p, ", "))); \\ _Michel Marcus_, Jan 10 2016 %o A088179 (PARI) list(lim)=my(v=List(),last); forsquarefree(k=1,lim\1, if(moebius(k)==1, last=k[1], if(k[2][,2]==[1]~ && k[1]-last==1, listput(v,k[1])))); Vec(v) \\ _Charles R Greathouse IV_, Jan 08 2018 %o A088179 (Magma) [n: n in [2..2000] | IsPrime(n) and MoebiusMu(n-1) eq 1]; // _Vincenzo Librandi_, Jan 10 2016 %Y A088179 Cf. A049092 (primes p with mu(p-1)=0), A078330 (primes p with mu(p-1)=-1), A089451 (mu(p-1) for prime p). %Y A088179 Cf. A002496. %K A088179 nonn %O A088179 1,1 %A A088179 _N. J. A. Sloane_ and _T. D. Noe_, Nov 03 2003