cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088192 Distance between prime(n) and the largest quadratic residue modulo prime(n).

This page as a plain text file.
%I A088192 #32 Feb 16 2018 08:59:15
%S A088192 1,2,1,3,2,1,1,2,5,1,3,1,1,2,5,1,2,1,2,7,1,3,2,1,1,1,3,2,1,1,3,2,1,2,
%T A088192 1,3,1,2,5,1,2,1,7,1,1,3,2,3,2,1,1,7,1,2,1,5,1,3,1,1,2,1,2,11,1,1,2,1,
%U A088192 2,1,1,7,3,1,2,5,1,1,1,1,2,1,7,1,3,2,1,1,1,3,2,13,3,2,2,5,1,1,2,1
%N A088192 Distance between prime(n) and the largest quadratic residue modulo prime(n).
%C A088192 a(n) = smallest m>0 such that -m is a quadratic residue modulo prime(n).
%C A088192 a(n) = smallest m>0 such that prime(n) either splits or ramifies in the imaginary quadratic field Q(sqrt(-m)). Equals -A220862(n) except when n = 1. Cf. A220861, A220863. - _N. J. A. Sloane_, Dec 26 2012
%C A088192 The values are 1 or a prime number (easily provable!). The maximum occurring prime values increase very slowly: up to 10^5 terms the largest prime is 43. The primes do not appear in order.
%D A088192 David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Cor. 5.17, p. 105. - From _N. J. A. Sloane_, Dec 26 2012
%H A088192 Charles R Greathouse IV, <a href="/A088192/b088192.txt">Table of n, a(n) for n = 1..10000</a>
%H A088192 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a>.
%H A088192 J. A. Bergstra, I. Bethke, <a href="http://arxiv.org/abs/1507.00548">A negative result on algebraic specifications of the meadow of rational numbers</a>, arXiv preprint arXiv:1507.00548 [math.RA], 2015-2016.
%F A088192 a(n) = A053760(n) unless -1 is a quadratic residue mod prime(n). - _Charles R Greathouse IV_, Oct 31 2012
%t A088192 a[n_] := With[{p = Prime[n]}, If[JacobiSymbol[-1, p] > 0, 1, For[d = 2, True, d = NextPrime[d], If[JacobiSymbol[-d, p] >= 0, Return[d]]]]]; Array[a, 100] (* _Jean-François Alcover_, Feb 16 2018, after _Charles R Greathouse IV_ *)
%o A088192 (PARI) qrp_pm(fr,to)= {/* The distance of largest QR modulo the primes from the primes */ local(m,p,v=[]); for(i=fr,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m<p-1),m=max(m,(j^2)%p); j++); v=concat(v,p-m)); print(v) }
%o A088192 (PARI) do(p)=if(kronecker(-1,p)>0, 1, forprime(d=2, p, if(kronecker(-d, p) >= 0, return(d))))
%o A088192 apply(do, primes(100)) \\ _Charles R Greathouse IV_, Oct 31 2012
%Y A088192 Records are (essentially) given by A147971.
%Y A088192 Cf. A088190, A088191, A088193, A088194, A088195, A220861, A220862, A220863.
%K A088192 easy,nonn
%O A088192 1,2
%A A088192 Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003
%E A088192 Edited by _Max Alekseyev_, Oct 29 2012