cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088193 Prime numbers where the sequence of largest quadratic residues modulo the primes (A088190) is non-monotonic.

This page as a plain text file.
%I A088193 #10 Nov 01 2024 09:36:04
%S A088193 3,7,31,71,103,151,199,239,271,311,359,463,599,719,823,839,911,1063,
%T A088193 1231,1279,1303,1439,1559,1871,1879,1951,1999,2143,2239,2311,2351,
%U A088193 2383,2399,2551,2711,2791,3191,3391,3463,3559,3583,3823,3911,3919,4079,4159
%N A088193 Prime numbers where the sequence of largest quadratic residues modulo the primes (A088190) is non-monotonic.
%C A088193 From the second term on, these primes are always ==7 mod 8. (Tested for the first 20000 primes)
%C A088193 From _Robert Israel_, Oct 31 2024: (Start)
%C A088193 This is true because if prime(n) == 1 mod 4, A088190(n) = prime(n) - 1 while if prime(n) == 3 mod 8, A088190(n) = prime(n) - 2.  In either case, A088190(n) > prime(n-1) - 1 >= A088190(n-1).
%C A088193 Primes prime(n) such that A088190(n) <= A088190(n-1). (End)
%H A088193 Robert Israel, <a href="/A088193/b088193.txt">Table of n, a(n) for n = 1..10000</a>
%p A088193 lqr:= proc(p) local k;
%p A088193   for k from p-1 by -1 do if numtheory:-quadres(k,p) = 1 then return k fi od:
%p A088193 end proc:
%p A088193 p:= 2: v:= lqr(2): R:= NULL: count:= 0:
%p A088193 while count < 100 do
%p A088193   q:= p; vq:= v; p:= nextprime(p); v:= lqr(p);
%p A088193   if v <= vq then R:= R,p; count:= count+1;
%p A088193   fi
%p A088193 od:
%p A088193 R; # _Robert Israel_, Oct 31 2024
%o A088193 (PARI) qrp_p_nm(to)= {/* The primes where the sequence of the largest QR modulo the primes is non-monotonic */ local(m,k=1,p,v=[]); for(i=2,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m<p-1),m=max(m,(j^2)%p); j++); if((m-k)<=0,v=concat(v,p)); k=m); print(v) }
%Y A088193 Cf. A088190, A088191, A088192, A088194, A088195.
%K A088193 easy,nonn
%O A088193 1,1
%A A088193 Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003