This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088193 #10 Nov 01 2024 09:36:04 %S A088193 3,7,31,71,103,151,199,239,271,311,359,463,599,719,823,839,911,1063, %T A088193 1231,1279,1303,1439,1559,1871,1879,1951,1999,2143,2239,2311,2351, %U A088193 2383,2399,2551,2711,2791,3191,3391,3463,3559,3583,3823,3911,3919,4079,4159 %N A088193 Prime numbers where the sequence of largest quadratic residues modulo the primes (A088190) is non-monotonic. %C A088193 From the second term on, these primes are always ==7 mod 8. (Tested for the first 20000 primes) %C A088193 From _Robert Israel_, Oct 31 2024: (Start) %C A088193 This is true because if prime(n) == 1 mod 4, A088190(n) = prime(n) - 1 while if prime(n) == 3 mod 8, A088190(n) = prime(n) - 2. In either case, A088190(n) > prime(n-1) - 1 >= A088190(n-1). %C A088193 Primes prime(n) such that A088190(n) <= A088190(n-1). (End) %H A088193 Robert Israel, <a href="/A088193/b088193.txt">Table of n, a(n) for n = 1..10000</a> %p A088193 lqr:= proc(p) local k; %p A088193 for k from p-1 by -1 do if numtheory:-quadres(k,p) = 1 then return k fi od: %p A088193 end proc: %p A088193 p:= 2: v:= lqr(2): R:= NULL: count:= 0: %p A088193 while count < 100 do %p A088193 q:= p; vq:= v; p:= nextprime(p); v:= lqr(p); %p A088193 if v <= vq then R:= R,p; count:= count+1; %p A088193 fi %p A088193 od: %p A088193 R; # _Robert Israel_, Oct 31 2024 %o A088193 (PARI) qrp_p_nm(to)= {/* The primes where the sequence of the largest QR modulo the primes is non-monotonic */ local(m,k=1,p,v=[]); for(i=2,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m<p-1),m=max(m,(j^2)%p); j++); if((m-k)<=0,v=concat(v,p)); k=m); print(v) } %Y A088193 Cf. A088190, A088191, A088192, A088194, A088195. %K A088193 easy,nonn %O A088193 1,1 %A A088193 Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003