cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088195 Distance (A088192) of primes from the largest quadratic residues modulo the primes (A088190), where the latter is non-monotonic.

This page as a plain text file.
%I A088195 #5 Mar 14 2018 03:51:12
%S A088195 3,3,3,7,3,3,3,7,3,11,7,3,7,11,3,11,7,3,3,3,3,7,17,7,3,3,3,3,3,3,13,3,
%T A088195 11,3,7,3,11,3,3,3,3,3,13,3,11,3,3,3,3,3,11,7,11,13,3,7,7,11,7,3,3,11,
%U A088195 19,3,11,3,3,11,17,3,11,3,7,3,13,3,3,3,3,11,11,3,3,3,3,13,19,3,3,3,7,11
%N A088195 Distance (A088192) of primes from the largest quadratic residues modulo the primes (A088190), where the latter is non-monotonic.
%C A088195 The values are some odd primes, but never 5. The maximum value increases very slowly, it only reaches 31 for the first 20000 primes.
%C A088195 It is conjectured that if we denote the members of A088194 by D(n) and the member of this sequence by M(n) then if D(n)=-1 then M(n)=7, while if M(n)=3 then D(n)=0.
%C A088195 The values are odd primes, but never 5 (the primality is provable). The maximum value increases very slowly: it only reaches 43 for the first 10^5 primes.
%H A088195 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a>.
%o A088195 (PARI) qrp_pm_nm(to)= {/* The distance of LQR from the primes where the sequence of the largest QR modulo the primes is non-monotonic */ local(m,k=1,p,v=[]); for(i=2,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m<p-1),m=max(m,(j^2)%p); j++); if((m-k)<=0,v=concat(v,p-m)); k=m); print(v) }
%Y A088195 Cf. A088190, A088191, A088192, A088193, A088194.
%K A088195 easy,nonn
%O A088195 1,1
%A A088195 Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003