This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088195 #5 Mar 14 2018 03:51:12 %S A088195 3,3,3,7,3,3,3,7,3,11,7,3,7,11,3,11,7,3,3,3,3,7,17,7,3,3,3,3,3,3,13,3, %T A088195 11,3,7,3,11,3,3,3,3,3,13,3,11,3,3,3,3,3,11,7,11,13,3,7,7,11,7,3,3,11, %U A088195 19,3,11,3,3,11,17,3,11,3,7,3,13,3,3,3,3,11,11,3,3,3,3,13,19,3,3,3,7,11 %N A088195 Distance (A088192) of primes from the largest quadratic residues modulo the primes (A088190), where the latter is non-monotonic. %C A088195 The values are some odd primes, but never 5. The maximum value increases very slowly, it only reaches 31 for the first 20000 primes. %C A088195 It is conjectured that if we denote the members of A088194 by D(n) and the member of this sequence by M(n) then if D(n)=-1 then M(n)=7, while if M(n)=3 then D(n)=0. %C A088195 The values are odd primes, but never 5 (the primality is provable). The maximum value increases very slowly: it only reaches 43 for the first 10^5 primes. %H A088195 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a>. %o A088195 (PARI) qrp_pm_nm(to)= {/* The distance of LQR from the primes where the sequence of the largest QR modulo the primes is non-monotonic */ local(m,k=1,p,v=[]); for(i=2,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m<p-1),m=max(m,(j^2)%p); j++); if((m-k)<=0,v=concat(v,p-m)); k=m); print(v) } %Y A088195 Cf. A088190, A088191, A088192, A088193, A088194. %K A088195 easy,nonn %O A088195 1,1 %A A088195 Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003