This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088209 #39 Apr 23 2023 22:25:01 %S A088209 1,3,7,14,28,53,99,181,327,584,1034,1817,3173,5511,9527,16402,28136, %T A088209 48109,82023,139481,236631,400588,676822,1141489,1921993,3231243, %U A088209 5424679,9095126,15230452,25475429,42566379,71052157,118489383 %N A088209 Numerators of convergents of the continued fraction with the n+1 partial quotients: [1;1,1,...(n 1's)...,1,n+1], starting with [1], [1;2], [1;1,3], [1;1,1,4], ... %C A088209 Denominators form the Les Marvin sequence: A007502(n+1). %H A088209 Reinhard Zumkeller, <a href="/A088209/b088209.txt">Table of n, a(n) for n = 0..1000</a> %H A088209 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2,-1). %F A088209 G.f.: (1+x-x^3)/(1-x-x^2)^2. [Corrected by _Georg Fischer_, Aug 16 2021] %F A088209 a(n) = Fibonacci(n) + (n+1)*Fibonacci(n+1). - _Paul Barry_, Apr 20 2004 %F A088209 a(n) = a(n-1) + a(n-2) + Lucas(n). - _Yuchun Ji_, Apr 23 2023 %e A088209 a(3)/A007502(4) = [1;1,1,4] = 14/9. %t A088209 f[n_] := Numerator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* _Robert G. Wilson v_, Mar 04 2012 *) %t A088209 CoefficientList[Series[(1+x-x^3)/(-1+x+x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{1,3,7,14},40] (* _Harvey P. Dale_, Jul 13 2021 *) %o A088209 (Haskell) %o A088209 a088209 n = a088209_list !! n %o A088209 a088209_list = zipWith (+) a000045_list $ tail a045925_list %o A088209 -- _Reinhard Zumkeller_, Oct 01 2012, Mar 04 2012 %o A088209 (Julia) # The function 'fibrec' is defined in A354044. %o A088209 function A088209(n) %o A088209 n == 0 && return BigInt(1) %o A088209 a, b = fibrec(n) %o A088209 a + (n + 1)*b %o A088209 end %o A088209 println([A088209(n) for n in 0:32]) # _Peter Luschny_, May 18 2022 %Y A088209 a(n) = A109754(n, n+2) = A101220(n, 0, n+2). %Y A088209 Cf. A007502 (the denominators), A000045, A045925. %K A088209 frac,nonn %O A088209 0,2 %A A088209 _Paul D. Hanna_, Sep 23 2003