A088248 Orders of twisted fields.
27, 64, 81, 125, 243, 256, 343, 512, 625, 729, 1024, 1331, 2187, 2197, 2401, 3125, 4096, 4913, 6561, 6859, 12167, 14641, 15625, 16384, 16807, 19683, 24389, 28561, 29791, 32768, 50653, 59049, 65536, 68921, 78125, 79507, 83521, 103823, 117649
Offset: 1
References
- D. E. Knuth, ``Finite Semifields and Projective Planes'' Selected Papers on Discrete Mathematics, Center for the Study of Language and Information, Leland Stanford Junior University, CA, 2003, p336.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- D. E. Knuth, Finite Semifields and Projective Planes, Journal of Algebra, Volume 2, Issue 2, June 1965, Pages 182-217.
Programs
-
Mathematica
okQ[n_] := Module[{f, p, k}, If[n <= 16, False, f = FactorInteger[n]; If[Length[f] > 1, False, {p, k} = First[f]; k >= 3 && Not[p == 2 && PrimeQ[k]]]]]; Select[Range[10^6], okQ] (* Jean-François Alcover, Jul 07 2015 *)
-
Python
from math import isqrt from sympy import primerange, integer_nthroot, primepi def A088248(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x+primepi(x.bit_length()-1)-sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 11 2024
Formula
All p^k > 16, prime p, k>=3, except 2^q, q prime.
Comments