A088264 Smallest number k > 0 such that prefixing k to the n-th quadruple in the set {(1,3,7,9), (11,13,17,19), (21,23,27,29), ...} yields all primes.
1, 189, 8, 94, 156, 32, 34, 18, 14, 1, 1653, 101, 2764, 99, 326, 715, 144, 1322, 4300, 768, 122, 67, 72, 500, 427, 3, 77, 22, 285, 119, 25, 294, 632, 55, 51, 3974, 217, 1230, 1022, 346, 1461, 260, 19, 9, 536, 463, 3, 299, 1, 69, 539, 1285, 1833, 116, 397, 3951
Offset: 1
Examples
a(2) = 189 as 189 is the smallest number such that 18911, 18913, 18917 and 18919 are all prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local R,k,p; R:= map(`+`,[1,3,7,9],10*(n-1)); p:= 10^(ilog10(R[1])+1); for k from 1 do if map(t -> isprime(t+p*k), R) = [true,true,true,true] then return k fi od end proc: map(f, [$1..60]); # Robert Israel, Jun 18 2017
Extensions
Corrected and extended by Ray G. Opao, Mar 23 2005
More terms from David Wasserman, Jul 27 2005
Comments