cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088311 Number of sets of lists with distinct list sizes, cf. A000262.

This page as a plain text file.
%I A088311 #34 Dec 15 2022 05:15:28
%S A088311 1,1,2,12,48,360,2880,25200,241920,2903040,36288000,479001600,
%T A088311 7185024000,112086374400,1917922406400,35307207936000,669529276416000,
%U A088311 13516122267648000,294509190463488000,6568835422076928000,155705728523304960000,3882911605049917440000
%N A088311 Number of sets of lists with distinct list sizes, cf. A000262.
%C A088311 a(n) also enumerates ordered pairs of permutation functions on n elements where f(g(x)) = g(g(f(x))). - _Chad Brewbaker_, Mar 27 2014
%H A088311 Vincenzo Librandi, <a href="/A088311/b088311.txt">Table of n, a(n) for n = 0..200</a>
%F A088311 E.g.f: Product_{m>0} (1+x^m).
%F A088311 a(n) = n! * A000009(n).
%p A088311 b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
%p A088311      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
%p A088311     end:
%p A088311 a:= n-> n!*b(n):
%p A088311 seq(a(n), n=0..25);  # _Alois P. Heinz_, Jun 15 2018
%t A088311 nn = 19; Drop[ Range[0, nn]! CoefficientList[ Series[ Product[1 + x^i, {i,nn}], {x,0,nn}], x], 0] (* _Geoffrey Critzer_, Aug 05 2013; adapted to new offset by _Vincenzo Librandi_, Mar 28 2014 *)
%t A088311 nmax = 20; CoefficientList[Series[Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Aug 19 2015 *)
%o A088311 (PARI) my(x='x+O('x^66)); Vec(serlaplace(eta(x^2)/eta(x))) \\ _Joerg Arndt_, Aug 06 2013
%o A088311 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( (&*[1+x^j: j in [1..m+2]]) ))); // _G. C. Greubel_, Dec 14 2022
%o A088311 (SageMath)
%o A088311 # uses[EulerTransform from A166861]
%o A088311 a = BinaryRecurrenceSequence(0, 1) #  Peter Luschny's code of A000009 and A166861
%o A088311 b = EulerTransform(a)
%o A088311 [factorial(n)*b(n) for n in range(41)] # _G. C. Greubel_, Dec 14 2022
%Y A088311 Cf. A000009, A007837, A007838.
%Y A088311 Other ordered permutation function pair relations are A000012, A000085, A000142, A001044, A053529.
%K A088311 nonn
%O A088311 0,3
%A A088311 _Vladeta Jovovic_, Nov 05 2003
%E A088311 Prepended a(0) = 1, _Joerg Arndt_, Aug 06 2013