cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088312 Number of sets of lists (cf. A000262) with even number of lists.

This page as a plain text file.
%I A088312 #36 Dec 14 2022 06:30:08
%S A088312 1,0,1,6,37,260,2101,19362,201097,2326536,29668681,413257790,
%T A088312 6238931821,101415565836,1765092183037,32734873484250,644215775792401,
%U A088312 13404753632014352,293976795292186897,6775966692145553526,163735077313046119861,4138498600079573989140
%N A088312 Number of sets of lists (cf. A000262) with even number of lists.
%C A088312 From _Peter Bala_, Mar 27 2022: (Start)
%C A088312 a(2*n) is odd ; a(2*n+1) is even.
%C A088312 If k is odd then k*(k-1) divides a(k). Consequently, 6 divides a(6*n+3), 10 divides a(10*n+5), 14 divides a(14*n+7), and in general, if k is odd then 2*k divides a(2*k*n + k).
%C A088312 For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)
%H A088312 Alois P. Heinz, <a href="/A088312/b088312.txt">Table of n, a(n) for n = 0..444</a>
%H A088312 Peter Bala, <a href="/A047974/a047974_1.pdf">Integer sequences that become periodic on reduction modulo k for all k</a>
%H A088312 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
%H A088312 N. J. A. Sloane, <a href="/transforms.txt">LAH transform</a>
%F A088312 E.g.f.: cosh(x/(1-x)).
%F A088312 a(n) = Sum_{k=1..floor(n/2)} n!/(2*k)!*binomial(n-1,2*k-1).
%F A088312 a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - _Vaclav Kotesovec_, Jul 04 2015
%F A088312 a(n+4) - 2*(2*n+5)*a(n+3) + (6*n^2+24*n+23)*a(n+2) - 2*(n+1)*(n+2)*(2*n+3)*a(n+1) + n*(n+1)^2*(n+2)*a(n) = 0. - _Emanuele Munarini_, Sep 03 2017
%F A088312 a(n) = (1/2)*(A000262(n) + (-1)^n*A111884(n)). - _Peter Bala_, Mar 27 2022
%F A088312 a(n) = (1/2)*(n-1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4) for n >= 1. - _Peter Luschny_, Dec 14 2022
%p A088312 b:= proc(n, t) option remember; `if`(n=0, t, add(
%p A088312       b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
%p A088312     end:
%p A088312 a:= n-> b(n, 1):
%p A088312 seq(a(n), n=0..30);  # _Alois P. Heinz_, May 10 2016
%p A088312 A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # _Peter Luschny_, Dec 14 2022
%t A088312 With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* _Vaclav Kotesovec_, Jul 04 2015 *)
%t A088312 Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* _Emanuele Munarini_, Sep 03 2017 *)
%o A088312 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // _G. C. Greubel_, Dec 13 2022
%o A088312 (SageMath)
%o A088312 def A088312_list(prec):
%o A088312     P.<x> = PowerSeriesRing(QQ, prec)
%o A088312     return P( cosh(x/(1-x)) ).egf_to_ogf().list()
%o A088312 A088312_list(40) # _G. C. Greubel_, Dec 13 2022
%Y A088312 Cf. A000262, A001710, A027187, A024429, A024430, A088313, A111884.
%K A088312 nonn,easy
%O A088312 0,4
%A A088312 _Vladeta Jovovic_, Nov 05 2003
%E A088312 More terms from _Vaclav Kotesovec_, Jul 04 2015
%E A088312 a(0)-a(1) prepended by _Alois P. Heinz_, May 10 2016