cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088313 Number of "sets of lists" (cf. A000262) with an odd number of lists.

This page as a plain text file.
%I A088313 #33 Dec 14 2022 06:29:58
%S A088313 0,1,2,7,36,241,1950,18271,193256,2270017,29272410,410815351,
%T A088313 6231230412,101560835377,1769925341366,32838929702671,646218442877520,
%U A088313 13441862819232001,294656673023216946,6788407001443004647,163962850573039534580,4142654439686285737201
%N A088313 Number of "sets of lists" (cf. A000262) with an odd number of lists.
%C A088313 From _Peter Bala_, Mar 27 2022: (Start)
%C A088313 a(2*n) is even; in fact, 2*n*(2*n-1)*(2n-2) divides a(2*n). a(2*n+1) is odd.
%C A088313 For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)
%H A088313 Alois P. Heinz, <a href="/A088313/b088313.txt">Table of n, a(n) for n = 0..444</a>
%H A088313 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
%H A088313 N. J. A. Sloane, <a href="/transforms.txt">LAH transform</a>
%F A088313 E.g.f.: sinh(x/(1-x)).
%F A088313 a(n) = Sum_{k=1..floor((n+1)/2)} n!/(2*k-1)!*binomial(n-1, 2*k-2).
%F A088313 E.g.f.: sinh(x/(1-x)) = x/(2-2*x)*E(0), where E(k)= 1 + 1/( 1 - x^2/(x^2 + 2*(1-x)^2*(k+1)*(2*k+3)/E(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 16 2013
%F A088313 a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - _Vaclav Kotesovec_, Jul 04 2015
%F A088313 a(n) = (1/2)*(A000262(n) - (-1)^n*A111884(n)). - _Peter Bala_, Mar 27 2022
%F A088313 a(n) = n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4) for n >= 1. - _Peter Luschny_, Dec 14 2022
%p A088313 b:= proc(n, t) option remember; `if`(n=0, t, add(
%p A088313       b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
%p A088313     end:
%p A088313 a:= n-> b(n, 0):
%p A088313 seq(a(n), n=0..30);  # _Alois P. Heinz_, May 10 2016
%p A088313 A088313 := n -> ifelse(n=0, 0, n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4)): seq(simplify(A088313(n)), n = 0..21); # _Peter Luschny_, Dec 14 2022
%t A088313 With[{m=30}, CoefficientList[Series[Sinh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* _Vaclav Kotesovec_, Jul 04 2015 *)
%o A088313 (PARI) my(x='x+O('x^66)); concat(0, Vec(serlaplace(sinh(x/(1-x))))) \\ _Joerg Arndt_, Jul 16 2013
%o A088313 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); [0] cat Coefficients(R!(Laplace( Sinh(x/(1-x)) ))); // _G. C. Greubel_, Dec 13 2022
%o A088313 (SageMath)
%o A088313 def A088313_list(prec):
%o A088313     P.<x> = PowerSeriesRing(QQ, prec)
%o A088313     return P( sinh(x/(1-x)) ).egf_to_ogf().list()
%o A088313 A088313_list(40) # _G. C. Greubel_, Dec 13 2022
%Y A088313 Cf. A000262, A001710, A027187, A024429, A024430, A088312, A109777, A111884.
%K A088313 nonn,easy
%O A088313 0,3
%A A088313 _Vladeta Jovovic_, Nov 05 2003
%E A088313 a(0)=0 prepended by _Alois P. Heinz_, May 10 2016