cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088314 Cardinality of set of sets of parts of all partitions of n.

This page as a plain text file.
%I A088314 #56 Sep 14 2023 18:06:43
%S A088314 1,1,2,3,5,6,10,12,18,22,30,37,51,61,79,96,124,148,186,222,275,326,
%T A088314 400,473,575,673,811,946,1132,1317,1558,1813,2138,2463,2893,3323,3882,
%U A088314 4461,5177,5917,6847,7818,8994,10251,11766,13334,15281,17309,19732,22307
%N A088314 Cardinality of set of sets of parts of all partitions of n.
%C A088314 Number of different values of A007947(m) when A056239(m) is equal to n.
%C A088314 From _Gus Wiseman_, Sep 11 2023: (Start)
%C A088314 Also the number of finite sets of positive integers that can be linearly combined using all positive coefficients to obtain n. For example, the a(1) = 1 through a(7) = 12 sets are:
%C A088314   {1}  {1}  {1}    {1}    {1}    {1}      {1}
%C A088314        {2}  {3}    {2}    {5}    {2}      {7}
%C A088314             {1,2}  {4}    {1,2}  {3}      {1,2}
%C A088314                    {1,2}  {1,3}  {6}      {1,3}
%C A088314                    {1,3}  {1,4}  {1,2}    {1,4}
%C A088314                           {2,3}  {1,3}    {1,5}
%C A088314                                  {1,4}    {1,6}
%C A088314                                  {1,5}    {2,3}
%C A088314                                  {2,4}    {2,5}
%C A088314                                  {1,2,3}  {3,4}
%C A088314                                           {1,2,3}
%C A088314                                           {1,2,4}
%C A088314 Cf. A365073, A365311, A365312, A365322, A365380.
%C A088314 (End)
%H A088314 Alois P. Heinz, <a href="/A088314/b088314.txt">Table of n, a(n) for n = 0..100</a>
%F A088314 a(n) = 2^(n-1) - A070880(n). - _Alois P. Heinz_, Feb 08 2019
%F A088314 a(n) = A365042(n) + 1. - _Gus Wiseman_, Sep 13 2023
%e A088314 The 7 partitions of 5 and their sets of parts are
%e A088314 [ #]  partition      set of parts
%e A088314 [ 1]  [ 1 1 1 1 1 ]  {1}
%e A088314 [ 2]  [ 2 1 1 1 ]    {1, 2}
%e A088314 [ 3]  [ 2 2 1 ]      {1, 2}  (same as before)
%e A088314 [ 4]  [ 3 1 1 ]      {1, 3}
%e A088314 [ 5]  [ 3 2 ]        {2, 3}
%e A088314 [ 6]  [ 4 1 ]        {1, 4}
%e A088314 [ 7]  [ 5 ]          {5}
%e A088314 so we have a(5) = |{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {5}}| = 6.
%p A088314 list2set := L -> {op(L)};
%p A088314 a:= N -> list2set(map( list2set, combinat[partition](N) ));
%p A088314 seq(nops(a(n)), n=0..30);
%p A088314 #  Yogy Namara (yogy.namara(AT)gmail.com), Jan 13 2010
%p A088314 b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
%p A088314       {b(n, i-1)[], seq(map(x->{x[],i}, b(n-i*j, i-1))[], j=1..n/i)}))
%p A088314     end:
%p A088314 a:= n-> nops(b(n, n)):
%p A088314 seq(a(n), n=0..40);
%p A088314 # _Alois P. Heinz_, Aug 09 2012
%t A088314 Table[Length[Union[Map[Union,IntegerPartitions[n]]]],{n,1,30}] (* _Geoffrey Critzer_, Feb 19 2013 *)
%t A088314 (* Second program: *)
%t A088314 b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i < 1, {},
%t A088314      Union@Flatten@{b[n, i - 1], Table[If[Head[#] == List,
%t A088314      Append[#, i]]& /@ b[n - i*j, i - 1], {j, 1, n/i}]}]];
%t A088314 a[n_] := Length[b[n, n]];
%t A088314 a /@ Range[0, 40] (* _Jean-François Alcover_, Jun 04 2021, after _Alois P. Heinz_ *)
%t A088314 combp[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,1,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
%t A088314 Table[Length[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&&combp[n,#]!={}&]], {n,0,15}] (* _Gus Wiseman_, Sep 11 2023 *)
%o A088314 (Haskell)
%o A088314 a066186 = sum . concat . ps 1 where
%o A088314    ps _ 0 = [[]]
%o A088314    ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
%o A088314 -- _Reinhard Zumkeller_, Jul 13 2013
%o A088314 (Python)
%o A088314 from sympy.utilities.iterables import partitions
%o A088314 def A088314(n): return len({tuple(sorted(set(p))) for p in partitions(n)}) # _Chai Wah Wu_, Sep 10 2023
%Y A088314 Cf. A182410.
%Y A088314 The complement in subsets of {1..n-1} is A070880(n) = A365045(n) - 1.
%Y A088314 The case of pairs is A365315, see also A365314, A365320, A365321.
%Y A088314 A116861 and A364916 count linear combinations of strict partitions.
%Y A088314 A179822 and A326080 count sum-closed subsets.
%Y A088314 A326083 and A124506 appear to count combination-free subsets.
%Y A088314 A364914 and A365046 count combination-full subsets.
%Y A088314 Cf. A000009, A007865, A088528, A088809, A093971, A326020, A364272, A364534, A365043, A364350.
%K A088314 easy,nonn
%O A088314 0,3
%A A088314 _Naohiro Nomoto_, Nov 05 2003
%E A088314 More terms and clearer definition from _Vladeta Jovovic_, Apr 21 2005