This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088314 #56 Sep 14 2023 18:06:43 %S A088314 1,1,2,3,5,6,10,12,18,22,30,37,51,61,79,96,124,148,186,222,275,326, %T A088314 400,473,575,673,811,946,1132,1317,1558,1813,2138,2463,2893,3323,3882, %U A088314 4461,5177,5917,6847,7818,8994,10251,11766,13334,15281,17309,19732,22307 %N A088314 Cardinality of set of sets of parts of all partitions of n. %C A088314 Number of different values of A007947(m) when A056239(m) is equal to n. %C A088314 From _Gus Wiseman_, Sep 11 2023: (Start) %C A088314 Also the number of finite sets of positive integers that can be linearly combined using all positive coefficients to obtain n. For example, the a(1) = 1 through a(7) = 12 sets are: %C A088314 {1} {1} {1} {1} {1} {1} {1} %C A088314 {2} {3} {2} {5} {2} {7} %C A088314 {1,2} {4} {1,2} {3} {1,2} %C A088314 {1,2} {1,3} {6} {1,3} %C A088314 {1,3} {1,4} {1,2} {1,4} %C A088314 {2,3} {1,3} {1,5} %C A088314 {1,4} {1,6} %C A088314 {1,5} {2,3} %C A088314 {2,4} {2,5} %C A088314 {1,2,3} {3,4} %C A088314 {1,2,3} %C A088314 {1,2,4} %C A088314 Cf. A365073, A365311, A365312, A365322, A365380. %C A088314 (End) %H A088314 Alois P. Heinz, <a href="/A088314/b088314.txt">Table of n, a(n) for n = 0..100</a> %F A088314 a(n) = 2^(n-1) - A070880(n). - _Alois P. Heinz_, Feb 08 2019 %F A088314 a(n) = A365042(n) + 1. - _Gus Wiseman_, Sep 13 2023 %e A088314 The 7 partitions of 5 and their sets of parts are %e A088314 [ #] partition set of parts %e A088314 [ 1] [ 1 1 1 1 1 ] {1} %e A088314 [ 2] [ 2 1 1 1 ] {1, 2} %e A088314 [ 3] [ 2 2 1 ] {1, 2} (same as before) %e A088314 [ 4] [ 3 1 1 ] {1, 3} %e A088314 [ 5] [ 3 2 ] {2, 3} %e A088314 [ 6] [ 4 1 ] {1, 4} %e A088314 [ 7] [ 5 ] {5} %e A088314 so we have a(5) = |{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {5}}| = 6. %p A088314 list2set := L -> {op(L)}; %p A088314 a:= N -> list2set(map( list2set, combinat[partition](N) )); %p A088314 seq(nops(a(n)), n=0..30); %p A088314 # Yogy Namara (yogy.namara(AT)gmail.com), Jan 13 2010 %p A088314 b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {}, %p A088314 {b(n, i-1)[], seq(map(x->{x[],i}, b(n-i*j, i-1))[], j=1..n/i)})) %p A088314 end: %p A088314 a:= n-> nops(b(n, n)): %p A088314 seq(a(n), n=0..40); %p A088314 # _Alois P. Heinz_, Aug 09 2012 %t A088314 Table[Length[Union[Map[Union,IntegerPartitions[n]]]],{n,1,30}] (* _Geoffrey Critzer_, Feb 19 2013 *) %t A088314 (* Second program: *) %t A088314 b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i < 1, {}, %t A088314 Union@Flatten@{b[n, i - 1], Table[If[Head[#] == List, %t A088314 Append[#, i]]& /@ b[n - i*j, i - 1], {j, 1, n/i}]}]]; %t A088314 a[n_] := Length[b[n, n]]; %t A088314 a /@ Range[0, 40] (* _Jean-François Alcover_, Jun 04 2021, after _Alois P. Heinz_ *) %t A088314 combp[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,1,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; %t A088314 Table[Length[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&&combp[n,#]!={}&]], {n,0,15}] (* _Gus Wiseman_, Sep 11 2023 *) %o A088314 (Haskell) %o A088314 a066186 = sum . concat . ps 1 where %o A088314 ps _ 0 = [[]] %o A088314 ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)] %o A088314 -- _Reinhard Zumkeller_, Jul 13 2013 %o A088314 (Python) %o A088314 from sympy.utilities.iterables import partitions %o A088314 def A088314(n): return len({tuple(sorted(set(p))) for p in partitions(n)}) # _Chai Wah Wu_, Sep 10 2023 %Y A088314 Cf. A182410. %Y A088314 The complement in subsets of {1..n-1} is A070880(n) = A365045(n) - 1. %Y A088314 The case of pairs is A365315, see also A365314, A365320, A365321. %Y A088314 A116861 and A364916 count linear combinations of strict partitions. %Y A088314 A179822 and A326080 count sum-closed subsets. %Y A088314 A326083 and A124506 appear to count combination-free subsets. %Y A088314 A364914 and A365046 count combination-full subsets. %Y A088314 Cf. A000009, A007865, A088528, A088809, A093971, A326020, A364272, A364534, A365043, A364350. %K A088314 easy,nonn %O A088314 0,3 %A A088314 _Naohiro Nomoto_, Nov 05 2003 %E A088314 More terms and clearer definition from _Vladeta Jovovic_, Apr 21 2005