This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088319 #15 Mar 04 2020 11:07:15 %S A088319 41,205,389,689,1565,1625,1781,3865,4105,4549,5989,7421,9161,9685, %T A088319 10225,10685,13025,17509,17965,18329,21349,21701,25801,33161,33169, %U A088319 33529,36749,38581,39709,49325,51649,52429,52721,56785,57065,67205,70801 %N A088319 Ordered hypotenuses of primitive Pythagorean triangles having legs that add up to a square. %D A088319 F. Rubin, "Squared" Pythagorean Triples, Solution to problem 2306, J. Recreational Mathematics, Vol. 29, No. 1, 1998, p. 73. %H A088319 Ray Chandler, <a href="/A088319/b088319.txt">Table of n, a(n) for n = 1..10000</a> %F A088319 a(n)=e^2+f^2, where e>f, e=j^2 - jk + k^2/2 and f=jk for coprime pairs (j, k) with k even. %e A088319 9161 is in the sequence because of the triple 5289^2 + 7480^2 = 9161^2 where we have 5289+7480=113^2. %e A088319 Similarly, 205 belongs to the triple (133,156,205) and 133+156=17^2. %t A088319 terms = 1000; jmax = 100; kmax = 200; %t A088319 Reap[Do[If[CoprimeQ[j, k], e = j^2 - j k + k^2/2; f = j k; If[e > f, Sow[e^2 + f^2]]], {j, 1, jmax}, {k, 2, kmax, 2}]][[2, 1]] // Union // Take[#, terms]& (* _Jean-François Alcover_, Mar 04 2020 *) %Y A088319 Cf. A088515, A088516, A088546, A089545-A089552, A089554-A089558. %K A088319 nonn %O A088319 1,1 %A A088319 _Lekraj Beedassy_, Nov 06 2003