This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088332 #49 Jul 16 2025 13:36:34 %S A088332 2,3,7,39916801,10888869450418352160768000001, %T A088332 13763753091226345046315979581580902400000001, %U A088332 33452526613163807108170062053440751665152000000001 %N A088332 Primes of the form k! + 1. %C A088332 The next term is too large to include. %C A088332 Of course 2 = 0! + 1 = 1! + 1 has two such representations. %C A088332 Prime numbers that are the sum of two factorial numbers. - _Juri-Stepan Gerasimov_, Nov 08 2010 %D A088332 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118. %H A088332 Amiram Eldar, <a href="/A088332/b088332.txt">Table of n, a(n) for n = 1..15</a> (terms 1..11 from T. D. Noe) %H A088332 Romeo Meštrović, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023. - From _N. J. A. Sloane_, Jun 13 2012 %F A088332 a(n) = A038507(A002981(n+1)). - _Elmo R. Oliveira_, Apr 16 2025 %e A088332 3! + 1 = 7 is prime. %t A088332 lst={};Do[p=n!+1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,3*5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 27 2009 *) %t A088332 Select[Range[50]!+1,PrimeQ] (* _Harvey P. Dale_, May 17 2025 *) %o A088332 (PARI) factp1prime(n)=for(x=1,n,xf=x!+1; if(isprime(xf),print1(xf","))) %Y A088332 Cf. A002981 (values of k), A038507, A062701. %K A088332 nonn %O A088332 1,1 %A A088332 _Cino Hilliard_, Nov 06 2003