cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088333 A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer 3 places clockwise from i. Repeat, counting 3 places from the next undeleted integer, until only one integer remains.

Original entry on oeis.org

1, 1, 2, 2, 1, 5, 2, 6, 1, 5, 9, 1, 5, 9, 13, 1, 5, 9, 13, 17, 21, 3, 7, 11, 15, 19, 23, 27, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42
Offset: 1

Views

Author

N. J. A. Sloane, Nov 13 2003

Keywords

Comments

If one counts only one place (resp. two places) at each stage to determine the element to be deleted, we get A006257 (resp. A054995).

References

  • See A054995 for references and links.

Crossrefs

Formula

It is tempting (in view of A054995) to conjecture that a(1)=1 and, for n>1, a(n) = (a(n-1)+4) mod n. The conjecture is false; counterexample: a(21)=21; a(20)=17; (a(20)+4)mod 21=0; corrected formula: a(n)=(a(n-1)+3) mod n +1;
The conjecture is true. After removing the 4th number, we are reduced to the n-1 case, but starting with 5 instead of 1. - David Wasserman, Aug 08 2005
a(n) = A032434(n,4) if n>=4. - R. J. Mathar, May 04 2007

Extensions

More terms from David Wasserman, Aug 08 2005