This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088357 #15 Apr 16 2021 15:46:44 %S A088357 1,1,1,3,5,11,27,55,127,285,647,1457,3297,7489,16945,38523,87293, %T A088357 198179,449907,1021135,2318527,5263581,11950967,27133985,61609953, %U A088357 139888777,317629465,721215027,1637598485,3718378619,8443065363,19171129327 %N A088357 G.f. = continued fraction: A(x)=1/(1-x/(1-2*x^2/(1-3*x^3/(1-4*x^4/(...))))). %H A088357 Seiichi Manyama, <a href="/A088357/b088357.txt">Table of n, a(n) for n = 0..100</a> %F A088357 G.f.: T(0), where T(k) = 1 - x^(k+1)*(k+1)/( x^(k+1)*(k+1) - 1/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 26 2013 %F A088357 a(n) ~ c * d^n, where d = 2.2706470084004562621321821916243432273516... and c = 0.1745837410025587240288929391139119506... - _Vaclav Kotesovec_, Aug 25 2017 %t A088357 nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]*x^Range[nmax + 1]]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 25 2017 *) %o A088357 (PARI) S=1; L=30; for(k=1,L,m=L-k+1; S=1/(1-m*x^m*S)+x*O(x^L)); A(x)=S; a(n)=polcoeff(A(x),n,x) %Y A088357 Cf. A005169, A285381. %K A088357 nonn %O A088357 0,4 %A A088357 _Paul D. Hanna_, Sep 26 2003