This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088385 #15 Nov 20 2024 13:08:46 %S A088385 23,3098,820418,285310847068,302589794921642,827239959011230171924, %T A088385 1977592415398427252359802,20880466021428256374041443786588, %U A088385 2567686153140330666561980302696661093572902 %N A088385 a(n) = prime(n+1)^prime(n+1) - prime(n)^prime(n). %H A088385 G. C. Greubel, <a href="/A088385/b088385.txt">Table of n, a(n) for n = 1..75</a> %F A088385 a(n) = A051674(n+1) - A051674(n). - _R. J. Mathar_, Apr 26 2007 %e A088385 a(5) = prime(6)^prime(6) - prime(5)^prime(5) = 13^13 - 11^11 = 302589794921642. %t A088385 With[{P=Prime}, Table[P[n+1]^P[n+1]-P[n]^P[n], {n,30}]] (* _Vladimir Joseph Stephan Orlovsky_, Mar 01 2009 *) %t A088385 Differences[Table[p^p,{p,Prime[Range[10]]}]] (* _Harvey P. Dale_, Nov 20 2024 *) %o A088385 (Magma) P:=NthPrime; [P(n+1)^P(n+1) - P(n)^P(n): n in [1..20]]; // _G. C. Greubel_, Dec 12 2022 %o A088385 (SageMath) P=nth_prime; [P(n+1)^P(n+1) - P(n)^P(n) for n in range(1,21)] # _G. C. Greubel_, Dec 12 2022 %Y A088385 Cf. A000040, A000312, A051674. %K A088385 easy,nonn %O A088385 1,1 %A A088385 Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Nov 08 2003