This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088426 #22 May 31 2022 12:51:27 %S A088426 1,2,1,1,2,3,1,1,2,1,2,3,1,2,1,1,2,1,1,2,3,1,1,2,1,2,4,1,1,4,1,2,1,1, %T A088426 2,1,1,1,2,1,2,2,1,2,3,1,2,1,1,1,1,1,1,2,1,2,1,1,2,2,1,1,1,1,2,3,1,1, %U A088426 2,1,1,3,1,2,1,1,2,1,1,2,2,1,1,1,1,2,4,1,2,3,1,1,1,1,1,2,1,1,1,1 %N A088426 Number of primes in arithmetic progression starting with 19 and with d=2n. %C A088426 Arithmetic progression is stopped when next term is not prime. E.g. for n=6 (d=12), a=3, that is 19,31,43 are prime, while next term, 55, is not prime. %C A088426 From _Robert Israel_, Jul 27 2020: (Start) %C A088426 a(n) = 1 if n == 1 (mod 3), a(n) <= 2 if n == 2 (mod 3). %C A088426 If a(n) >= p where p is 3, 5, 7, 11, 13 or 17, then n is divisible by p. %C A088426 All a(n) < 19. %C A088426 Records: %C A088426 a(1)=1 %C A088426 a(2)=2 %C A088426 a(6)=3 %C A088426 a(27)=4 %C A088426 a(210)=5 %C A088426 a(825)=6 %C A088426 a(16380)=7 %C A088426 a(273420)=9 %C A088426 a(17853675)=10 (End) %C A088426 From _David A. Corneth_, Jul 29 2020: (Start) %C A088426 Other first occurrences are: %C A088426 a(779520) = 8 %C A088426 a(4918073160) = 11 %C A088426 a(3187366788375) = 12 %C A088426 a(6125952702870) = 13 %C A088426 If a(k) = 14 then k > 4.8*10^15. %C A088426 If a(k) = 15 then k > 1.77 * 10^16. (End) %H A088426 Robert Israel, <a href="/A088426/b088426.txt">Table of n, a(n) for n = 1..10000</a> %p A088426 f:= proc(n) local d,k; %p A088426 d:= 2*n; %p A088426 for k from 1 while isprime(19+d*k) do od: %p A088426 k %p A088426 end proc: %p A088426 map(f, [$1..200]); # _Robert Israel_, Jul 27 2020 %t A088426 bb={}; Do[s=1; Do[If[PrimeQ[19+k*d], s=s+1, bb={bb, s}; Break[]], {k, 10}], {d, 2, 200, 2}]; Flatten[bb] %Y A088426 Cf. A005115, A088420, A088421, A088422, A088423, A088424, A088425, A088427, A088428, A088429. %K A088426 easy,nonn %O A088426 1,2 %A A088426 _Zak Seidov_, Sep 29 2003