cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088488 a(n) = Sum_{k=1..8} floor(A254876(n,k)/A254876(n-1,k)), where A254876(n,k) = n! / (Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m).

This page as a plain text file.
%I A088488 #29 Dec 18 2022 02:33:36
%S A088488 8,17,22,26,40,43,49,66,65,69,87,87,68,109,108,109,137,130,130,157,
%T A088488 153,133,180,174,171,211,196,191,227,218,186,250,240,232,280,262,253,
%U A088488 298,285,164,319,304,292,350,327,313,367,349,292,390,371,354,426,393,375
%N A088488 a(n) = Sum_{k=1..8} floor(A254876(n,k)/A254876(n-1,k)), where A254876(n,k) = n! / (Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m).
%H A088488 Antti Karttunen, <a href="/A088488/b088488.txt">Table of n, a(n) for n = 2..10000</a>
%F A088488 a(n) = Sum_{k=1..8} floor(A254876(n,k)/A254876(n-1,k)), where A254876(n,k) = n! / (Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m).
%t A088488 p[n_, k_]=n!/Product[i, {i, n-Floor[2*n/3^k], n-Floor[n/3^k]}]
%t A088488 f[n_]=Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}]
%t A088488 at=Table[f[n], {n, 2, 200}]
%o A088488 (PARI)
%o A088488 A088488(n) = sum(k=1,8,(A254876bi(n,k)\A254876bi(n-1,k)));
%o A088488 A254876bi(n,k) = n! / prod(i=(n-((2*n)\(3^k))),(n-(n\(3^k))),i);
%o A088488 for(n=2, 10000, write("b088488.txt", n, " ", A088488(n)));
%o A088488 (Scheme)
%o A088488 (define (A088488 n) (add (lambda (k) (floor->exact (/ (A254876bi n k) (A254876bi (- n 1) k)))) 1 8))
%o A088488 ;; The following function implements sum_{i=lowlim..uplim} intfun(i)
%o A088488 (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
%Y A088488 Cf. A088487, A254876.
%K A088488 nonn,less
%O A088488 2,1
%A A088488 _Roger L. Bagula_, Nov 09 2003
%E A088488 Edited by _Antti Karttunen_, Feb 09 2015