This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088494 #18 Mar 28 2022 07:44:12 %S A088494 15,20,32,36,48,41,64,72,80,78,96,81,112,120,128,120,144,94,160,168, %T A088494 176,162,192,200,208,216,224,177,240,218,256,264,272,280,288,195,304, %U A088494 312,320,288,336,261,352,360,368,330,384,392,400,408,416,212,432,440,448 %N A088494 Let P(n,k) = n!/(Product_{i=1..pi(n)/2^(k-1)} prime(i)) be an integer matrix of "partial" factorials. Then a(n) = sum_{k=1..8} floor( P(n,k)/P(n-1,k)). %C A088494 The auxiliary integer array P is n! divided by the product of the first primes with an upper limit of the prime index given by A000720(n)/2^(k-1). It starts in row n=1 with columns k>=1 as: %C A088494 1, 1, 1, 1, 1, 1, 1, 1, ... %C A088494 1, 2, 2, 2, 2, 2, 2, 2, ... %C A088494 1, 3, 6, 6, 6, 6, 6, 6, ... %C A088494 4, 12, 24, 24, 24, 24, 24, 24, ... %C A088494 4, 60, 120, 120, 120, 120, 120, 120, ... %C A088494 24, 360, 720, 720, 720, 720, 720, 720, ... %C A088494 24, 840, 2520, 5040, 5040, 5040, 5040, 5040, ... %C A088494 The a(n) are some sort of average integer value of ratios of neighbored rows in the first 8 columns. %H A088494 G. C. Greubel, <a href="/A088494/b088494.txt">Table of n, a(n) for n = 2..5000</a> %F A088494 a(n) = Sum_{k=1..8} floor(p(n,k)/p(n-1,k)), where p(n, k) = n!/( Product_{j=1..PrimePi(n)/2^(k-1)} Prime(j) ). - _G. C. Greubel_, Mar 27 2022 %p A088494 P := proc(n,k) %p A088494 local a,i ; %p A088494 a := 1 ; %p A088494 for i from 1 to numtheory[pi](n)/2^(k-1) do %p A088494 a := ithprime(i) *a ; %p A088494 end do: %p A088494 n!/a ; %p A088494 end proc: %p A088494 A088494 := proc(n) %p A088494 add( floor(P(n,k)/P(n-1,k)),k=1..8) ; %p A088494 end proc: # _R. J. Mathar_, Sep 17 2013 %t A088494 p[n_, k_]:= p[n,k]= n!/Product[Prime[i], {i, PrimePi[n]/2^(k-1)}]; %t A088494 f[n_]:= f[n]= Sum[Floor[p[n, k]/p[n-1, k]], {k,8}]; %t A088494 Table[f[n], {n,2,70}] %o A088494 (Sage) %o A088494 @CachedFunction %o A088494 def f(n,k): return product( nth_prime(j) for j in (1..prime_pi(n)/2^(k-1)) ) %o A088494 def A088494(n): return sum( (n*f(n-1,k)//f(n,k)) for k in (1..8) ) %o A088494 [A088494(n) for n in (2..70)] # _G. C. Greubel_, Mar 27 2022 %Y A088494 Cf. A088140, A088493. %K A088494 nonn %O A088494 2,1 %A A088494 _Roger L. Bagula_, Nov 10 2003 %E A088494 Meaningful name by _R. J. Mathar_, Sep 17 2013